UNIVERSITY OF VICTORIA

CSC 320 - Spring 2023

Foundations of Computer Science

Tutorial 09

Teaching Team

Learning Outcomes:

- Use reduction to prove a language is undecidable.
- Become familiar with reduction.

Interesting Article:

"Decidable and Undecidable Problems about Quantum Automata" [1]

March 21st, 2023

Consider the language:

$$A_{\text{Im}} = \{ < M, \, \mathsf{W} > | \, M \text{ accepts } \mathsf{W} \, \}$$

It is easy to show the A_{in} is Turing Recognizable. Given an input $\langle M, W \rangle$, simulate M on W. If M accepts w then <u>accept</u> and if M rejects w then <u>reject</u>.

Theorem ATM is undecidable.

Proof

Suppose A_{TM} is decidable. Then there exists a halting TM H that on input $\langle M, \omega \rangle$, accepts if M accepts ω and rejects if M does not accept ω .

Using H, construct another machine N as follows.

Description of Turing Machine N

<u>Input</u>: <M> where M is a TM A description of H is hardcore into the machine N. I. Simulate H on <M,<M>>. J. If H rejects then accept else reject. By definition!

Note that the machine H is a halting 1M, hence N is also a halting 1M. Now consider what happens when the machine N is provided with the imput $\langle N \rangle$. The constructed machine

 $N \text{ accepts } \langle N \rangle \iff H \text{ rejects } \langle N_i \langle N \rangle \rangle \iff N \text{ does not accept } \langle N \rangle$

This is a contradiction. Hence A_{TM} is undecidable.

Why is this important?

We can now show that a language is undecidable by "reducing" a known undecidable language to the given language.

Decidability and Reductions

Consider we have two problems: A and B. Furthermore, we show that we can reduce A to B. That is, $A \rightarrow B$.

Remember that a reduction Means 4e can solve A using B, If we have the answer to B, then we have the answer to A as well'

Now consider what if we know that A is really difficult to solve? Then B must also be really difficult to solve, since otherwise We just solved it using the reduction.

bo, what if we know that B is really casy to solve? Then A is also easy to solve since we can use the answer to B to solve A. This shown in the reduction.

Proving a Language is Undecidable using a Reduction

We will use proof by contradiction to construct our proof.

How? If we are trying to prove that a problem X is undecidable, we will first assume for <u>contradiction</u> that X is decidable and therefore there exists some decider R which decides X. Next we will reduce a Knoon undecidable problem (e.g., Am to X). More specifically, we will build a decider for Am that uses $R \leftarrow \frac{\text{Remember our goal}}{\text{thus we will alternypt to build}}$

50, by creating a decider for ATM, we have made a contradiction since we know, by thorem, that ATM is undecidable. Thus, we can also conclude the the language X must also not be decidable.

General Steps to Prove a Language is Undecidability using a Reduction

<u>Step 1</u>	Assume for contradiction that X is decidable. Then, by definition, there exists some Turing Machine (TM) R which is a decider for X.	before continuing with our proof! eate our TM.
Step 2	Urite a skeleton reduction from a known undecidable language to X.	Ue vill use App! But think about how ve could use another undecidable language to prove the some language. Does the structure change?
<u>51 up 3</u>	building it of input to , R Gill give us the ansat to be prosen of	us our decider for X! Ue want R on input <<> provide an answer for ATM.
Step 4	Finish Uriting the reduction!	
	Explain that be brote a decider for an undecidable produm Uhich is a contradiction!	Note: We can simply state that
<u>dep 5</u>	Conclude that X is undecidable. The proof is not complete unless Ue make this statement!	"X is undecidable" after Uniting the contents of Stup 4, but we can also include a more detailed final statement.
	ve make this statement!	

Stop ?

Prove that the following language is undecidable by reduction from A_{TM} .

ATM - Regular TM $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$ Regular_{TM} = { $\langle M \rangle$ | M is a TM and L(M) is a regular language} Prove that Regularize is undecidable (JOA) Assume for contradiction that Regular m is decidable. Step 1 Then, by definition, there exists some decider R Unich decides Regular TM. Ue will now build a decider 5 for Arm using R. (Ue Know this isn't possible! However, we will try to create our THC which saturfices Arm. Step 2 5= "On imput < M, W> where M is a TM and U is a string C Description of M and C hardcoded into its description! Construct 1M C. Step 3 C = "On imput X : 1. If X is of the form O"1", accept. 2. If x does not have this form : - Run M on input w and i) if Maccepts U, accept. Othervise, reject." — Observe that us never actually run C, us use R to decide a property of C. 2. Run R on input < C>. 3 If R accepts, accept. If R rejects, reject." R is a decider since each Note that L(C) is \geq (which is regular) if M accepts U. JUD Step vill halt. L(c) is 0°1° (non-regular) if M does not accept U. if R decides that L(c) is regular then... Thus, L(C) is regular if and only if (iff) M accepts U. So R accepts iff M accepts U. Threfore, S is a decider for ATM, but this is a contradiction Since ATM is undecidable.

Prove that the following language is undecidable by reduction from A_{TM} .

IF M accepts 0011 Hen M accepts 1100

General Idea

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \}$$

 $S_{TM} = \{ \langle M \rangle \mid M \text{ is a TM that accepts } w^r \text{ whenever it accepts } w \}$

So, S is a decider for ATM.

<u>Stop 5</u>

We can then conclude that STM is also undecidable. We can then conclude that STM is also undecidable. Stop at step 4 with the statement "a contradiction" - It does not bring us to the

- It does not bring us to the "goal" of our proof. Us much be explicit and formal!

Prove that the following language is undecidable by reduction from A_{TM} .

$$A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w\}$$

$$E_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and } L(M) = \emptyset\}$$

$$= \{\langle M, \rangle \langle M_{3} \rangle, \dots \mid L(M_{1}) \in \emptyset, \quad i \ge 0\}$$
Prove that \mathcal{E}_{1M} is undecidable.
$$A_{1500} \text{ Prove that } \mathcal{E}_{1M} \text{ is undecidable.}$$

$$A_{1500} \text{ Prove that } \mathcal{E}_{1M} \text{ is undecidable.}$$

$$A_{1500} \text{ Prove that } \mathcal{E}_{1M} \text{ is undecidable.}$$

$$A_{1500} \text{ Assume for contradiction that } \mathcal{E}_{TM} \text{ is decidable.} \\ A_{1500} \text{ Assume for contradiction that } \mathcal{E}_{TM} \text{ is decidable.} \\ A_{1500} \text{ More for contradiction there exists some decider R which decides $\mathcal{E}_{1M}.$

$$A_{1500} \text{ Us two bould a decider S for A_{1M} using R. \leftarrow Us Keen there under passfel.} \\ Here, w with two bould a decider S for A_{1M} using R. \leftarrow Us Keen there used on MC which which here is the decider here.} \\ 5 = "On input \langle M, U \rangle:$$

$$A_{100} \text{ I. Construct MM C. \leftarrow D_{1000} \text{ bound in a here where here is the here phile.} \\ C = "On input $\times :$

$$I. \text{ If } M \text{ accept } v. \text{ true } U \in \mathcal{P}.$$

$$J. \text{ If } M \text{ accept } v. \text{ true } U \in \mathcal{P}.$$

$$J. \text{ If } M \text{ accept } v. \text{ true } U \in \mathcal{P}.$$

$$J. \text{ If } M \text{ accept } v. \text{ true } U \in \mathcal{P}.$$

$$J. \text{ If } M \text{ accept } v. \text{ true } U \in \mathcal{P}.$$

$$J. \text{ If } R \text{ accept } v. \text{ true } U \in \mathcal{P}.$$

$$J. \text{ If } R \text{ accept } v. \text{ true } U \in \mathcal{P}.$$

$$J. \text{ If } R \text{ accept } v. \text{ true } U \in \mathcal{P}.$$

$$J. \text{ If } R \text{ accept } v. \text{ true } U \in \mathcal{P}.$$

$$J. \text{ If } R \text{ accept } v. \text{ true } U \in \mathcal{P}.$$

$$J. \text{ If } R \text{ accept } v. \text{ true } U \in \mathcal{P}.$$

$$J. \text{ true accept } U \text{ then } U \in \mathcal{P}.$$

$$J. \text{ true } M \text{ the } \text{ accept } v. \text{ true } U \text{ true } U \in \mathcal{P}.$$

$$J. \text{ true } M \text{ true } U \text{ true } U \text{ true } U \text{ true } U \in \mathcal{P}.$$

$$J. \text{ true } M \text{ true } U \text{ true } U$$$$$$

Prove that the following language is undecidable by reduction from ALL_{CFG} .

$$ALL_{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \Sigma^* \}$$

$$EQ_{CFG} = \{ \langle G, H \rangle \mid G \text{ and } H \text{ are CFGs and } L(G) = L(H) \}$$

- Goal Prove that Electric is undecidentle.
- Step 1 Assume for contradiction that EQCFG is decidable. Then, by definition, there exists some decider R which decides EQCFG.
- Step 2 Ue will now build a decider S for Allera Using R.

5 = "On imput < G > :

Step 3

Stop 5

- |. Construct a Context Free Grammar (CFG) H — Where L(H) = ≥^{\$}
 - 2. Run R on input <G,H>.
 - 3. If R accepts, accept. If R rejects, reject."
- Step 4 Note that this is a decider Since every step halls. Ue know this since if R decides accept, Ue know that $L(G) = L(H) = \Xi^*$ And if R decideo reject, Ue Know that $L(G) \neq \Xi^*$. Therefore, S is a decider for ALL cra. Ue know that this is a contradiction since ALL cra is Undecidable.

We can then conclude that Elera is also undecidable.

Remember Le cannot stop of step 4 with the statement "a contradiction" — It does not bring us to the "goal" of our proof. Le must be explicit and formal!

Resources

 V. D. Blondel, E. Jeandel, P. Koiran, and N. Portier, "Decidable and undecidable problems about quantum automata," *SIAM Journal on Computing*, vol. 34, no. 6, pp. 1464–1473, 2005. DOI: 10.1137/S0097539703425861
 [Online]. Available: https://doi.org/10.1137/S0097539703425861