CSC 320 - Spring 2023

Foundations of Computer Science

Tutorial 07

Teaching Team

Learning Outcomes:

- Construct High Level Turing Machines.
- Distinguish between different Turing Machine variants.
- Become familiar with Deciders vs Looping.

Interesting Article:
"Note on A Universal Quantum Turing Machine" (1)
"Quantum Chaos in Quantum Turing Machines" [2]

Question 03

Give a high level description of a Turing Machine which decides:

$$
B=\left\{a^{i} b^{j} c^{k} \mid i \times j=k \text { and } i, j, k \geq 1\right\}
$$

we can start by building intuition. Let's see what is and isn't in B. Not: $\varepsilon, a b c c, a a b c, b, c, a, a b$.

IN: $a b c$, $a a b b c c c c$, $a b b c c$.
イ=" On input x :

$$
\begin{aligned}
& a^{+} \text {means at least } \\
& \text { one } a \text {. }
\end{aligned}
$$

(1) Sweep across tape and check that input is of form $a^{+} b^{+} c^{t}$. If not, reject.
(2) Move tape to first uncrossed ' a '. Cross it.
(3) Alternate between crossing off one ' b ' and the one ' c ' until all ' b 's are crossed. If all c's are crossed but the remain any uncrossed 'b's, reject. ex, $a a b b c$, abc, \$abbbc, abbot, reject.
(4) Uncross the crossed 'b's.
(5) Repeat steps (2) and (3) until all a 's are crossed
(6) Seep tape again and make sure all input symbols have been crossed.
a) If so \rightarrow accept.
b) If not \rightarrow reject."
ex. aabbcccc

$$
a a b b c c c c, \phi a b b c c c c, \phi a b b c c c c, \phi a b b \phi c c c, \alpha a \phi \phi \phi c c c, \text {, } \alpha a b \phi \phi \phi c c \text {. }
$$

$$
\phi a b b \phi \phi c c, \phi \phi b b \phi \phi c c, \alpha \phi \phi b \phi \phi \phi c, \phi \phi \phi \Delta b \phi \phi \phi c, \alpha \phi \phi b \phi \phi \phi \phi \psi \text {. }
$$

all a's crossed "
\rightarrow Ne sweep and everything is crossed "̈

Question 05

Give a high level description of a nondeterministic TM which recognizes the language:
$L=\left\{1^{n} \mid n\right.$ is a composite number $\} \quad$ Note: composite number :
This statement is Very
important!

4 since 2×2
6 Since 2×3
8 Since 2×4
9 since 3×3
(1) seep tape and make sure input is of form 1^{*}. If not, reject.
(2) Nondeterministically choose numbers p and $q<n$. Rewrite tape to be

$$
1^{n} \# 1^{p} \# 1^{q}
$$

(3) Check if $p \times q=n$ (We can wee our in for lannguary B !)
If yes, accept.
If no, reject."

What are the different TM variants? Give a brief explanation of each TM variant.

Multitape

Non deterministic

价
Turing Machine where head can move $\{L, R, S\}$.

Enumerators
Outputs all strings of a language.

List all TM variants that are equivalent to the deterministic single tape TM.

- Mullitape
- Nondeterministic TMS
- Enumerators

What is a Turing-Decidable language? What is the difference to a Turing-Recognizable language?

On every input, always halts.

May enter an infinite loop.

Resources

[1] S. Iriyama, T. Miyadera, and M. Ohya, "Note on a universal quantum turing machine," English, Physics letters. A, vol. 372, no. 31, pp. 5120-5122, 2008, ISSN: 03759601.
[2] I. Kim and G. Mahler, "Quantum chaos in quantum turing machines," English, Physics letters. A, vol. 263, no. 4, pp. 268-273, 1999, ISSN: 0375-9601.

