CSC 320 - Spring 2023

Foundations of Computer Science

Tutorial 06

Teaching Team

Learning Outcomes:

- Become familiar with Context Free Languages.
- Use the Context Free Language Pumping Lemma.
- Gain understanding of High Level description of a Turing Machine.

Interesting Article:
"Regular Patterns, Regular Languages and Context-Free Languages" 1]

February 28th, 2023

Question 01

Show that the following language is not CFL using the CFL pumping lemma:

$$
A=\left\{a^{i} b^{j} c^{k} \mid 0 \leq i \leq j \leq k\right\}
$$

We can begin by building our intuition. What is and ion't in th language?
not: aaabc, aaaabbc, aaabcccce.
IN: $\varepsilon, a b c, a a b b c c, a b b c c c$,
Suppose, for a contradiction, A is a CFL. Then by th CFL pumping lemma, there is a pumping length ρ such that for every string $s \in L$ where $|s| \geq p$, then
$S=u v x y z$ where
(1) $u v^{\prime} x y^{\prime} z \in L$ for each $i \geq 0$.
(2) $v y \neq \varepsilon$.
(3) $|v x y| \leqslant p$.

Consider $w=a^{p} b^{p} c^{p}$, where $w \in L$ since it satisfies th constraints and $|\omega| \geq p$ since $p+P+p=3 p \geq p$. So, by th CFL pumping lemma, $w=u v x y z$ for some u, v, x, y, z where the above conditions hold.
There are two cases:
(1) v and y each contain one type of symbol. Then it must be that one of the symbols a, b, c do not appear in v or y.
i) If a dow not appear, then vi' $x y^{\prime} z$ will contain the same number of a^{\prime} 's but k cess $b^{\prime} s$ or c's. So ova $x y^{\circ} z \notin L$.
ii) If b dos not appear, similarly to i) ${v v^{\circ}}^{x} y^{\circ} z \notin L$.
iii) If c dos not appear, similarity to i) $u v^{2} x y^{2} z \& L$.
(2) When v or y contains more then one type of symbol, then $v^{2} x y^{2} z$ will have symbols out of order. so. $v^{2} x y^{2} z \notin L$.
Nerefore, by th CFL pumping lemma, A is not a CFL. \longleftarrow Remember closing statement!
i) $\underbrace{a \ldots a b \ldots b c \ldots c}_{p} \underbrace{v_{p}}_{p} \underbrace{v_{p} y z}_{p}$

> Where v contains only b's
> and y only contains c's.
(2)

where V contains both a's
and b^{\prime}, so if pump we will
from $\frac{a}{} \frac{a a a}{u} \frac{a}{v} \frac{b b b b}{x} \frac{b c c c c c}{z}$
obtain aa aa ababababb bbbbbccccc
where the string is not in L.

Question 02

Show that the following language is not CFL using the CFL pumping lemma:

$$
B=\left\{0^{n} \# 0^{2 n} \# 0^{3 n} \mid n \geq 0\right\}
$$

We start by identifying some strings that are and are not in the language. Not: $\mathrm{O} \# 0 \# 0, \varepsilon, \mathrm{O} \# \mathrm{OH}, \# \mathrm{O}$,

IN: OH OD \# 000, \#\#,
Suppose, for a contradiction, B is a CFL. Then by th CFL pumping lemma, the is a pumping length p such that for every string $s \in B$ where $|s| \geqslant p$, then $s=0 r x y z$ where
(1) UVixyiz $\in B$ for each $i \geq 0$.

Important part of th Proof! Do not omit.
(2) $v y \neq \varepsilon$
(3) $|v x y| \leq p$
suppose $p=2$ thin
00 \#0000\#000000
which is in th language.
consider $w=0^{p} \# 0^{2 p} \# 0^{3 p}$, then $\cup \in B$ and $|u| \geqslant p$, so by th CFL pumping lemma.
$u=U V x y z$ for some v, v, x, y, z where th above condition hold.
To avoid contradicting (1), we know that neither v nor y contains $\#$, since otherwise $u v^{2} x y^{2} z$ has at least $3 \#^{\prime}$ s so $v^{2} x y^{2} z \notin B$.

Because of (3), at least one of $0^{p}, 0^{2 p}, 0^{3 p}$ have no symbols in V or y, so when se pump up to ${U V^{2}}^{2} y^{2} z$, we cannot have a string of form $O P \pm 0^{20} \# 0^{3 p}$ since th ratio 1:2:3 of 0 's will not hold in at least one place, so $\quad\left\langle v^{2} x y^{2} z \notin B\right.$.

Hence by th CFL pumping lemma, B is not a CFL.

Question 03

Give a high level description of a Turing Machine which decides:

$$
C=\left\{0^{2^{n}} \mid n \geq 0\right\} \quad \text { IN: } 0,00,0000,
$$

Hint: Review page 143 in the Textbook.
We begin by creating our Turing Machine M which decides C. $M=" O n$ input string w :

1. Sweep left to right across tape, crossing off every other 0 .
2. a) If Here vas only one 0 on th tape in step 1, accept.
b) If the use an odd number (which wasn't 1) on th tape in step 1, reject.
3. Return head to left end of tape.
4. Go to step 1." 四

Remember this is an informal description! This is a high level description:

- English prose to describe algorithm, ignoring implemention details.
- At this level: no need to mention hoo in manages its tape or tread.

Format
Input to $1 M$: string
objects other than strings as input must be
represented as string.

Resources

[1] S. Jain, Y. S. Ong, and F. Stephan, "Regular patterns, regular languages and contextfree languages," English, Information processing letters, vol. 110, no. 24, pp. 11141119, 2010, ISSN: 0020-0190.

