UNIVERSITY OF VICTORIA

CSC 320 - Spring 2023

Foundations of Computer Science

Tutorial 06

Teaching Team

Learning Outcomes:

- Become familiar with Context Free Languages.
- Use the Context Free Language Pumping Lemma.
- Gain understanding of High Level description of a Turing Machine.

Interesting Article:

"Regular Patterns, Regular Languages and Context-Free Languages" [1]

February 28th, 2023

Question 01

Show that the following language is not CFL using the CFL pumping lemma:

$$A = \{a^i b^j c^k \mid 0 \le i \le j \le k\}$$

We can begin by building our intuition. What is and isn't in the language? <u>NOT</u>: anabe, anabec, and cocce, <u>IN</u>: E, abe, and bec, abbecc,

Consider $W = \alpha^{p} b^{p} c^{p}$, where $W \in L$ since it satisfies the constraints and $|W| \ge p$ since $P + P + P = 3P \ge P$. So, by the CFL pumping lemma, $W = VVXY \ge for$ some $V, V, X, Y, \ge W$ where the above conditions hold.

There are two cases:

- (1) V and y each contain one type of symbol. Then it must be that one of the symbols a, b, c do not appear in V or y.
 i) If a downot appear, then uvxy'z will contain the same number of as but less b's or c's. So uvxy'z & L.
 ii) If b downot appear, similarly to i) uvxy'z & L.
 iii) If c downot appear, similarly to i) uvxy'z & L.
- (a) When V or y contains more then one type of symbol, than uv²xy² z will have symbols and of order. so, uv²xy² z & L.

Nurefore, by the CFL pumping lemma, A is not a CFL. (Remember closing statement!

Question 02

Show that the following language is not CFL using the CFL pumping lemma:

$$B = \{0^{n} \# 0^{2n} \# 0^{3n} | n \ge 0\}$$

We should by identifying some strings that are and are not in the language.
Not: 0#0#0, \mathcal{E} , 0#0#, #0#,
IN: 0#00 # 000, ##,
Suppose, for a contradiction, B is a CFL. And by the CFL pumping lemma, fure is
a pumping length p such that for every string seB where $|s| \ge p$, than
 $s: wxy^{2}$ where
(1) $w'xy'z \in B$ for each $i \ge 0$.
(2) $vy \ne \mathcal{E}$
(3) $|vxy| \le p$
Consider $w: 0^{p} \pm 0^{2p} \pm 0^{2p}$, then $v\in B$ and $|u|^{2}p$, so by the CFL pumping lemma,
 $u: Wxy^{2}$ for some v, v, x, y, z where the chose conditions hold.
To avoid contradiction O , we know that neither v mer y contains $\#$, since otherwise $W^{2}xy^{2}z$ has
at least $3 + i^{*}$ so $w'xy^{2} \le 4B$.

00	₩00 į	± 00	Unure v = #0, thin pumping "	would re	esult in	
4	ربی عو	~~ 319	00000 # 00000		\leftarrow	Only for visual
ų	Vxy Z		$00 \pm 0 \pm 0 000 \pm 0000000$ which would not be in B.		Only for Visual learning, not in the proof!	

Because of (3), at least one of O^{p} , O^{2p} , O^{3p} have no symbols in V or Y., so when we pump up to $UV^{2}XY^{2}Z$, we cannot have a string of form $OP \neq O^{3p} \neq O^{3p}$ since the ratio 1:2.3 of O's will not hold in at least one place, so $UV^{2}XY^{2}Z \notin B$.

00400#00	share V=0, this pumping would result in		
P 2P 3P	00#0000F 000000		
u v X y Z	0 00 # 00 00 # 00 000		
-	Which would not be in B.		

Hence by the CFL pumping lemma, B is not a CFL.

Question 03

Give a high level description of a Turing Machine which decides:

$$C = \{0^{2^n} \mid n \ge 0\} \qquad \qquad \underbrace{\operatorname{Not}}_{\underline{\mathrm{IN}}} : \ \mathbf{0}, \ \mathbf{00}, \ \mathbf{0000},$$

Hint: Review page 143 in the Textbook.

Resources

 S. Jain, Y. S. Ong, and F. Stephan, "Regular patterns, regular languages and contextfree languages," English, *Information processing letters*, vol. 110, no. 24, pp. 1114– 1119, 2010, ISSN: 0020-0190.