CSC 320 - Spring 2023

Foundations of Computer Science

Tutorial 05

Teaching Team

Learning Outcomes:

- Become familiar with Context Free Grammars.
- Convert a Context Free Grammar into Chomsky Normal Form.
- Use a Pushdown Automata to describe a language.

Interesting Article:
"A Formalisation of the Cocke-Younger-Kasami Algorithm" [1]

Question 02

Consider the following language over $\Sigma=\{0,1\}$, find a set of rules that defines a CFG that recognizes the language:

$$
L_{2}=\{w \mid w \text { starts and ends with the same symbol }\}
$$

Intuitively, we can determine what is and isn't in th language:

$$
\begin{aligned}
& \text { NoT: } 10,100,011,0101 \\
& \underline{I_{N}:} \varepsilon, 101,00,11,1,0,100001
\end{aligned}
$$

Thus, se can see an arising pattern within our accepted string U_{0}.
We have 3 cases:

$$
O \varepsilon^{*} O \text { or }\left|\varepsilon^{*}\right| \text { or } \varepsilon
$$

Where Σ^{2} is $\{0,1\}^{+}$or $(001)^{\varepsilon}$
Next, be start visiting our CFG:

$$
\begin{aligned}
& G=(V, E, R, s) \text {, where } \\
& V: \text { finite set of variables } \\
& E \text { : finite set of terminals } \\
& R: \text { finite set of rules } \\
& S: S \in V \text { is th start variable }
\end{aligned}
$$

$$
\begin{aligned}
& 5 \longrightarrow 0 \times 0| | x| | \varepsilon|0| 1 \\
& x \longrightarrow 0 x||x| \varepsilon
\end{aligned}
$$

Thus ve obtain

$$
G_{a}=(\{s, x\},\{0,1\}, R, s)
$$

\longleftarrow This is sufficient since oe are asked to find a set of rules, but it is good habit to include th formal definition.

Se can check our work to convince ourself that th grammar is correct.

$$
\begin{aligned}
& s, 0 \times 0,00 \times 0,000 \times 0,0000 \vee \\
& 5,1 \\
& 5,|x|,|1 x|,|10 x|,|100 x|, 1100 \mid \quad
\end{aligned}
$$

Question 03

Consider the following language over $\Sigma=\{0,1\}$, find a set of rules that defines a CFG that recognizes the language:

$$
L_{3}=\emptyset
$$

Ne note that th accepted language for L_{3} is the empty set. So, ve can we th following rules to describe L_{3} :

$$
S \longrightarrow S
$$

Thus, nothing is accepted.
Ne would thin have th following grammar...

$$
G_{3}=(\{s\},\{0,1\}, R, s)
$$

Question 05

Consider the following language over $\Sigma=\{0,1\}$, find a set of rules that defines a Context Free Grammar (CFG) that recognizes the language:

$$
L_{5}=\left\{0^{n} 1^{m} \mid 2 n \leq m \leq 3 n\right\}
$$

In plain english, we see that l's are at least twice th amount of O's, but not more than three times th amount of O's.

Let wo consider what is and is $n \cdot 1$ in th language:
No:: say $m=4$ and $n=6$ than $2(6) \leq 4 \leq 3(6)$

$$
\begin{aligned}
& \text { Nor: Say } m=4 \text { and } n=6 \text { thin } 2(6) \leq 4 \leq 3(6) \text { which dos not satisfy th condition. } \\
& \quad 12 \leq 4 \leq 18 \text {. }
\end{aligned}
$$

IN: if $n=2$ than $2(2) \leq m \leq 3(2)$
$4 \leq m \leq 6$, so m can be 4,5 , or 6 .
$001111,00111111,001111111$
Next, we observe th partner from our intuition of what is and init included. De cant to either include twi i's or three 1's for each 0 se add to ar string 0.

$$
s \longrightarrow 0 S 11 \backslash O S 111 \backslash \varepsilon
$$

Formally our GFG is of th form:
I Explanation not entirely necessary, but th purpose of learning io to be able to convince th reader that your solution is correct and to explain your process.

$$
G_{5}=(\{s\},\{0,1\}, R, s) .
$$

Note: The rule $s \rightarrow \varepsilon$, what wald happen if oe remove th rule?
what would our string is look like?
Question: Could be correctly add a rule $s \longrightarrow 0$ and for remove $s \rightarrow \varepsilon$? Why coudn't we change th rules and would there be cases where th string create still satisfies the requirements?

Question 10

Complete the state diagram by adding missing transitions so that it describes a PDA that recognizes the following language:

$$
\left.L=\left\{a^{m} b^{n} \mid m, n \geq 0 \text { and (either } m=n \text { or } m=n+2\right)\right\}
$$

(5,6)

Example:
Let $m=2$ and $n=2$, our string of th form $a^{m} b^{n}$ is abb.
(1)
(2)

(5)

$$
\left.\begin{array}{ccc}
A \\
\$ & \text { (6) } \\
\text { Stack } \\
\text { abb } \\
\uparrow & \text { Stack }
\end{array}\right) \text { stack }
$$

(3)

(4)
A
A
$\$$
Stack
arb
\uparrow

Thus, ve see that "nab" is accepted in our PDA.

Question 11
Derive or generate the string "aba" for the following grammar:

$$
\begin{aligned}
& \mathbb{R}: \\
& S \longrightarrow a A S|a S S| \epsilon \\
& A \longrightarrow S b A \mid b a
\end{aligned}
$$

$$
G=(v, \varepsilon, R, s)
$$

$$
V=\{S, A\}
$$

$$
\varepsilon=\{a, b\}
$$

$$
R=R
$$

Ko begin, se will follow left-most derivation:

$$
s=s
$$

- At each step, replace left-most variable.

Let us start at S

$$
S \longrightarrow a S S \longrightarrow a \underline{a s s} \longrightarrow a \underline{a} \longrightarrow a \underline{s} \leq \longrightarrow a b a a s s s
$$

\longrightarrow Le replace $\mathrm{sins}_{\mathrm{si}}$ by E respectively.
\rightarrow aba.
thus, we can derive "aabace" from our set of rules tor grammar G.
Additionally, we can represent th above as a parse tree for this derivation.

Step 1
Step 2

Step 3

Step 4

Sleep 6
Observe all th leaf notes in order from left-to-right.
aabaaとを ε
= aqaba

Question 12

Convert the following CFG into Chomsky Normal Form:

$$
\begin{aligned}
& S \longrightarrow A A A \mid \epsilon \\
& A \longrightarrow a a|A a| \epsilon
\end{aligned}
$$

Remember: Ko convert a CFG into Chomsky Normal Form (CNF) ve can follow the following "algorithms" or steps.

1. Add new start variable $S_{0} \rightarrow S$.
2. Remove epsilon (ε).
3. Remove unit rules.
4. Add terminal rates
5. Clean up long rules.

$$
\begin{aligned}
& \text { Every rule of form: } \\
& \text { (1) } A \rightarrow B C \\
& \text { (2) } A \rightarrow a \\
& \text { (3) } S_{0} \rightarrow \varepsilon \quad \text { only! }
\end{aligned}
$$

We begin with step 1 of th algorithm:
(1) $S_{0} \rightarrow S$
(2.) $S_{0} \rightarrow S \mid \varepsilon$
(20) $S_{0} \rightarrow S \mid \varepsilon$
$s \longrightarrow$ ARAl
$S \longrightarrow A A A \mid \varepsilon$
$S \longrightarrow$ AAAlaAla $\backslash \varepsilon$
$A \longrightarrow a a|A a| \varepsilon$
$A \longrightarrow a a|A a| \varepsilon$
$A \longrightarrow a a|A a| a$
(3a) $S_{0} \rightarrow$ AAA|AA|A| ε
(36) $S_{0} \rightarrow$ AAA|AA|aa \mid Aa $|a| \varepsilon$
$S \longrightarrow$ AAAlAAla
$S \longrightarrow$ AAAlAAlaa|Aala
$A \longrightarrow a a|A a| a$
$A \longrightarrow a a|A a| a$
(4u) $S_{0} \rightarrow$ AAAlAAlaa|Aala|c
(40) $S_{0} \rightarrow A A A|A A| X X|A X \backslash a| \varepsilon$
$S \longrightarrow$ AAAlAAlaa|Aala
$S \longrightarrow A A A|A A| X X \mid A X \backslash a$
$A \longrightarrow a a|A a| a$
$x \rightarrow a$

$$
\begin{aligned}
& A \longrightarrow X X|A X| a \\
& X \longrightarrow a
\end{aligned}
$$

(Sa) $S_{0} \rightarrow$ AAA|AA|XX|AX|a|c
(5) $S_{0} \rightarrow A B|A A| X X|A X \backslash a| \varepsilon$
$S \longrightarrow A B|A A| X X \mid A X \backslash a$
$S \longrightarrow$ AAA $|A A| X X \mid A X \backslash a$
$A \longrightarrow X X \backslash A X \backslash a$
$A \longrightarrow X X \mid A X \backslash a$
$X \rightarrow a$
$x \rightarrow a$ $B \rightarrow A A$

And now se have the following rule set:

$$
\begin{aligned}
& S_{0} \longrightarrow A B|A A| X X|A X| a \mid \varepsilon \\
& S \longrightarrow A B|A A| X X|A X| a \\
& A \longrightarrow X X|A X| a \\
& X \longrightarrow a \\
& B \longrightarrow A A
\end{aligned}
$$

Where $G=(V, \mathcal{L}, R, S)$

$$
\text { is } \left.V:\left\{S_{0}, S, A, X, B\right\},\{a\}, R, S_{0}\right\}
$$

Resources

[1] M. Bortin, "A Formalisation of the Cocke-Younger-Kasami Algorithm," Archive of Formal Proofs, 2016, https://isa-afp.org/entries/CYK.html, Formal proof development, ISSN: 2150-914x.

