UNIVERSITY OF VICTORIA

CSC 320 - Spring 2023

Foundations of Computer Science

Tutorial 04

Teaching Team

Learning Outcomes:

- Understand the Pumping Lemma.
- Prove that a language is not regular using the Pumping Lemma.

Interesting Article:

"Pumping Lemma for Quantum Automata" [1]

February 7th, 2023

Question 01

Prove that the following language is not regular using the pumping lemma.

$$L_{1} = \{0^{n} 1^{n} 2^{n} \mid n \ge 0\}$$
We remember the general structure of the pumping lemma:
Let us devew the follown:...
 $w \in L_{1}, |w| \ge p, w = xy \ge 1, such that:$
1. $|xy| \le p$
2. $y \ne \varepsilon$
3. $x_{y}^{x} \ge \varepsilon L, k \ge 0$.
Assume L, is regular. Then for ALL strings in L, with length greater than or equal to the
pumping length, the pumping lemma holds
 $Pedere your variables!$
 $Pedere your variables!
 $Pedere were off g^{p}$ where p is the pumping length.
 $w \in L_{1}$ since the are the some anomals of 0s, 1s, and Ξ_{2} and $|u| \ge p$.
 $w \in L_{2}$ since the are the some anomal of 0s, 1s, and Ξ_{2} and $|u| \ge p$.
 $w \in L_{2}$ since the are the some anomal of 0s, 1s, and Ξ_{2} and $|u| \ge p$.
 $w E_{1}$ since the are the some anomal of 0s, 1s, and Ξ_{2} and $|u| \ge p$.
 $w E_{2}$ so $w = 0^{n} f^{2} g^{n}$ where $p = value (party an an example and the part of the pool) of 3 then
 $0^{n} f^{2} = 000$ into $z = 0^{n} f^{2} g^{n}$ down and $0 \ge 1(z) + q$ which $p = p$
 \mathbb{Q} by $f \in z_{1}$ so xy contains only 0's.
 $p = p$
 \mathbb{Q} by $f \in z_{1}$ is $x_{2}^{n} \ge 4L_{1}$, since $0^{p+1} f^{p} \ge f^{p} f_{1}$.
(as $2 \ge x_{2}^{n} \ge 4L_{1}$, since $0^{p+1} f^{p} \ge f^{p} f_{1}$.
(by $2 \ge x_{2}^{n} \ge 4L_{1}$, since $0^{p+1} f^{p} \ge f^{p} f_{1}$.
(be obtain a contradiction!
Thus, we can contradiction!$$

Question 02

Prove that the following language is not regular using the pumping lemma.

$$L_2 = \{ w^r w \mid w \in \{0, 1\}^* \}$$

Start with our intuition of what is and isn't in the language: $\frac{NoT}{IN} : 01, 10, 100, 011, \frac{1}{IN} : 010, 1001, 11, 00, 101101, \frac{1}{IN}$

Assume L_2 is regular. Then for ALL shings in L_2 with length $\stackrel{>}{=}$ pumping length, the pumping lemma holds. \sim Logic that we have the whole proof on to prove it is <u>NOT</u> regular.

Pick
$$u = 0^{6} 11 P^{6}$$
 where p is the pumping length.
So, $U \in L_{2}$ and $|u| \ge p$.
Since 001100, 00011000 are all in the language and $P+1+1+P = 3p+2 \ge p$.
By the pumping lemma, $u = Xy^{2}$.
(1) $|xy| \le p$, so xy contains only 0's, $0...0110...0$
(2) $y \ne c$, so $y \cdot 0^{1}$, for some i.>0.
(3) $y \ne c$, so $y \cdot 0^{1}$, for some i.>0.
(4) $y \ne c$, so $y \cdot 0^{1}$, for some i.>0.
(5) $xy^{k} \ge c L_{2}$, $K \ge 0$ $(Remember to do)$
 $Remember to do)$
(5) $xy^{k} \ge c L_{2}$, $K \ge 0$ $(Remember to do)$
 $Remember to do)$
(6) $xy^{k} \ge c L_{2}$, $K \ge 0$ $(Remember to do)$
 $Remember to$

Aberefore, La is not regular.

Remember

$$\xrightarrow{y} \xrightarrow{z} \bigcirc \xrightarrow{z} \bigcirc \xrightarrow{z} \bigcirc$$
Assume $v = xyz$, so us with to be able to "pump"
y which still ends in an accept state for AUL U.

Reflection on Question 02

Why is the string $s = 0^P 0^P$ not a good choice to devise a contradiction to prove L_2 is not regular?

Throughts
Why did we chose
$$0^{p} 11p^{p}$$
 and ref something else? How did we dense such shing?
Unit happens if we dense the wears shing?
Intuk 3, we also that we cannot be of firm u'w since it number of 0's
there is will be different from the number of 0's offer it. 1's.
If we had there is he superior is 0's we wand get is a schedor like...
 $0 0 0 0 0 = 2 00 001$
Where we can still write the resulting string in the form with.
Formally
Assume L_{2} is equive. Then for the strings in L_{2} with length 2 pumping kength. The pumping lemma holds.
Pick us of P^{0} where is the pumping length.
To us to and with 2 p. $P_{1}P_{2} 2P 2 P$
By the pumping lemma, $U = Xy^{2}$.
(1) by is all 0's in the first hulf of 0's $0 \cdots 0^{m-1} p^{m-1} p$
(2) $y = 0^{1}$, $i \ge 0$
We want to all string in the first hulf of 0's $0 \cdots 0^{m-1} p^{m-1} p$
We want to alway on L_{2} .
If is only them.
 $^{12} 2, i \ge 0^{2} 20^{2} 0^{2} = 0^{2+2} 0^{2} P$
We want to alway on the string the length we cannot guarantee that paraping is may be a
down results in a string on to L_{2} .
If is only them $^{12} 2 p = 0^{2+2} 0^{2} (p^{2} - 0^{2+2}) = 0^{2(p-1)} = 0^{2(p-2)} p^{2(p-1)} = 0^{2(p-2)} 0^{2(p-1)} 0^{2($

Note: Convince yourself that 1°1° would give us the 5 same result as above.

Resources

[1] R. Lu and H. Zheng, "Pumping lemma for quantum automata," English, *International journal of theoretical physics*, vol. 43, no. 5, pp. 1191–1217, 2004, ISSN: 0020-7748.