CSC 320 - Spring 2023

Foundations of Computer Science

Tutorial 04

Teaching Team

Learning Outcomes:

- Understand the Pumping Lemma.
- Prove that a language is not regular using the Pumping Lemma.

Interesting Article:
"Pumping Lemma for Quantum Automata" 17

Question 01

Prove that the following language is not regular using the pumping lemma.

$$
L_{1}=\left\{0^{n} 1^{n} 2^{n} \mid n \geq 0\right\}
$$

Ne remember th general structure of th pumping lemmai Let us observe th following...
$\omega \in L,|\omega| \geq p, \omega=x y z$, such that:

1. $|x y| \leqslant p$
2. $y \neq \varepsilon$
3. $x y^{k} z \in L, k \geq 0$.

$$
\swarrow \text { Important to state! }
$$

Assume L_{1} is regular. Then for All strings in L, with length greater than or equal to the pumping length, the pumping lemma holds.
Pick: $\omega=0^{p} 1^{p} 2^{p}$ where p is th pumping length.
$\omega \in L$, since the are th same amounts of $0 \cdot 1,1 \dot{\prime}$, and 2 's and $|w| \geqslant p$.
Le know this since "IF" Le give p a value (purely an an example and not a part of th proof) of 3 then $0^{3} 1^{3} 2^{3}=000111222$ which statifico $0^{n} 11^{n} a^{n}$, where $n 20$ AND $3(3)=9$ which is greater then or equal to p.

By th pumping lemma, $v=x y z$
(1) $|x y| \leqslant p$, so $x y$ contains only 0^{\prime}. $\underbrace{0 \ldots 0}_{p} \underbrace{1 \ldots 1}_{p} \underbrace{2 \ldots 2}_{p}$
(2) $y \notin \varepsilon$, so $y=0^{i}$ for some $i>0$. variable declaration!
(3) $x y^{k} z \in L_{1}, k \geq 0$
case 1: $x y^{0} z \notin L_{1}$, since $\left.0^{p-i}\right|^{p} 2^{p} \notin L_{1}$.
Chase $2: x y^{2} z \& L_{1}$, since $\left.0^{p+i}\right|^{p} \alpha^{p} \& L_{1}$.
We obtain a contradiction!
Thus, we can conclude that L_{1} is not regular. \leftarrow Don't forget th

Question 02

Prove that the following language is not regular using the pumping lemma.

$$
L_{2}=\left\{w^{r} w \mid w \in\{0,1\}^{*}\right\}
$$

Start with our intuition of that is and isn't in th language:
Not: $01,10,110,011$,

$$
\frac{\text { Not }: 01,10,110,011,}{\text { IN }: ~} 0110,1001,11,00,10101 \text {, }
$$

Assume L_{2} is regular. Then for All slings in L_{2} with length \geq pumping length,
the pumping lemma holds.

$$
\alpha_{\text {Logic that we base th uhale proof on to piave it is Nor regular. }}
$$

Pick $W=O^{p} \| P^{p}$ where p is the pumping length.
so, $w \in L_{a}$ and $|u| \geq p$.
Since 001100,00011000 are all in th language and $p+1+1+p=2 p+2 \geq p$.
By the pumping lemma, $\omega=x y z$.
(1) $|x y| \leq p$, so $x y$ contains only 0 os,

(2) $y \neq \epsilon$, so $y=0^{i}$, for some iso.
(3) $x y^{k} z \in L_{a}, k \geq 0 \quad \swarrow$ Remember to do Case 1: $x y^{0} z \notin L_{a}$ since $0^{p-i} \| 0^{p} \notin L_{a}$.

$$
\underbrace{0 \ldots 0}_{p-i} 11 \underbrace{0 \ldots 0}_{p} \text { Thus, we no longer have w's, } \begin{aligned}
& \text { ie, } 0011000 \\
& \text { Which is not in } L_{a} \text {. }
\end{aligned}
$$ case $2: x y^{2} z \notin L_{a}$ since $0^{p+i} \| 0^{p} \notin L_{a}$.

We obtain a contradiction!
Therefore, L_{2} is not regular.

Remember

$$
\imath^{y}
$$

Assume $v=x y z$, so we cunt to be able to "pump" y which still ends in an accept state for All U.

Note: which other strings might be voed in our proof?
for example, is pol' a good string? (yes "').

Reflection on Question 02

Why is the string $s=0^{P} 0^{P}$ not a good choice to devise a contradiction to prove L_{2} is not regular?
Though
Why did we chose $0^{p} \| l P^{2}$ and not something else? Hoo did we devise such string?
what happens if oe choose the wrong string?

Intuitively

We chose $O^{p} 11 O^{p}$ since we need is to "separate" th 0 's so when ve pump y
in rule 3 , we show that we cannot be of foo U'w since th number of 0 's
before l's will be different than th number of 0 's after th 1 's.
If se didn't have is to separate th 0's we cold get in a situation like...

$$
\underbrace{00} \underbrace{00}_{y} \underbrace{00}_{y^{\circ}} \underbrace{00}_{u^{\prime}} \underbrace{00}_{v}
$$

where we can still write th resulting string in th Corm w'u.
formally
Assume L_{2} is regular. Then for All slings in L_{2} with length \geq pumping length, the pumping lemma holds.
Pick $L=0^{p} p^{p}$ where p is the pumping length.
so, $w \in L_{\partial}$ and $|\omega| \geqslant p . \quad p+p=2 P \geqslant p$
By the pumping lemma, $w=x y z$.
(1) $x y$ is all 0 s in the first half of 0 s

(2) $y=0, i>0$
(3) $x y^{k} z \in L_{2}, k \geq 0$

We vant to derive a contradiction, but we cannot guarantee that pumping y up or down results in a string not in L_{2}.
If i is even, then:

$$
i=2 j, j>0
$$

$$
\begin{aligned}
\text { Case } & x y^{0} z
\end{aligned}=0^{p-2 j} 0^{p}=0^{2 p-2 j}=0^{2(p \cdot j)}
$$

$$
=0^{p-j} 0^{p-j},
$$

Which se know is in L_{2}. $p=3, j=2$, which gives wo $0^{3-2} 0^{3-2}=0^{\prime} O^{\prime}$, which is of th fam $w^{x} 0$.
Cause $2 y^{m} z, m>1 \Rightarrow x y^{m z}=0^{p+m(2 j)} 0^{p}=0^{2 p+2 m j}$

$$
\text { Which is also in } L_{2} \text {. }
$$

So, vie cannot use $U=0^{P} 0^{p}$, because we do not reach a contradiction.
Note: Convince yourself that IP Mould give wo the 5 same result as above.

Resources

[1] R. Lu and H. Zheng, "Pumping lemma for quantum automata," English, International journal of theoretical physics, vol. 43, no. 5, pp. 1191-1217, 2004, ISSN: 0020-7748.

