Tutorial 03

UNIVERSITY OF VICTORIA

CSC 320 - Spring 2023

Foundations of Computer Science

Teaching Team

Learning Outcomes:

- Design a regular expression for a language.
- Convert a regular expression to an NFA.
- Convert a DFA to a regular language.

Interesting Article:

"Compressing Regular Expressions' DFA Table by Matrix Decomposition" [1]

Question 3.01

Design a regular expression for the following languages over the alphabet $\Sigma = \{0, 1\}$: (a) $L_1 = \{w \mid \text{every odd position of } w \text{ is a } 1\}$

(b) $L_2 = \{w \mid w \text{ is a string of length at most } 5\}$

(c) $L_3 = \{w \mid w \text{ contains an even number of } 0\text{'s or exactly two } 1\text{'s}\}$

Question 3.02

Convert the following regular expression to an NFA:

$$R_1 = (a \cup b^*)a$$

DFA to Regular Expression

If a language is regular, then there exists some regular expression that describes it. Transform the following DFA into a Regular Expression:

Figure 1: DFA

where the DFA can be describe by the following:

$$DFA = (\{q_1, q_2\}, \{a, b\}, \delta, q_1, \{q_2\})$$

and δ is defined as:

$$\begin{array}{c|ccc} \delta & a & b \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2 \end{array}$$

Bibliography

 Y. Liu, L. Guo, P. Liu, and J. Tan, "Compressing Regular Expressions' DFA Table by Matrix Decomposition," English, in *Implementation and Application of Automata*, ser. Lecture Notes in Computer Science, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 282–289, ISBN: 3642180973.