CSC 320 - Spring 2023

Foundations of Computer Science

Tutorial 02

Teaching Team

Learning Outcomes:

- Become familiar with DFAs and NFAs.
- Become familiar with the concept of Closure.
- Become familiar with the concept of Kleene Star.
- An introductory level of understanding of Reduction.

Interesting Article:
"On Theory of Regular Languages with the Kleene Star Operation" 1]

Question 01

Give the formal specification of a DFA for the following language:

DFA D

$$
D=\left(\left\{q_{0}\right\},\{0\}, \delta, q_{0},\left\{q_{0}\right\}\right) .
$$

Question 02
Give the formal specification of a DFA for the following language:

$$
L=\left\{w \in\{a, b\}^{*} \mid w \text { is any string not in }\left(a b^{+}\right)^{*}\right\}
$$

We can start by constructing a DFA that recognizes $\left(a b^{*}\right)^{*}$, and then use the complement (\bar{L}) to get strings not in $\left(a b^{+}\right)^{*}$.

Step 1

Why? Not: $a, b, a a, a a b, b b, b b a, a b a$, etc.
In : $\varepsilon, a b, a b b, a b b b$, etc.

DEA D_{1}
Step 2
Thus, this DFA D_{1} recognizes \bar{L}.

$$
D_{1}=\left\{\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\},\{a, b\}, \delta, q_{0},\left\{q_{0}, q_{2}\right\}\right)
$$

Step 3
Nov we can complement th previous DFA D_{1} by switching accept and non -accept states.

Step 4
We can now write the formal specification of our DFA D_{2} for language L. Note: This is very important! Why? Words and structure matters! Always be precise. Es

$$
\begin{aligned}
& D_{2}=\left(Q, \varepsilon, \delta, q_{0}, F\right) \text {, where } \\
& Q:\left\{q_{0}, q_{1}, q_{2}, q,\right\} \\
& E:\{a, b\} \\
& \delta: \text { Defined by our state diagram. } \\
& q_{0}: q_{0} \\
& F:\left\{q_{1}, q_{3}\right\}
\end{aligned}
$$

Question 03
Consider the following state diagram:

(a) Is the string 0011 accepted by this state machine? How about 1100? $0011 \quad B-A-$ cannot read string
$B-C$ - read 0011 with C loop transition
$B-C-D-$ cannot read string after th first O
No, it is not accepted.
$1100 \quad B-A-$ cannot read string after th first and second 1
$B-C-$ read 110 with C loop transition - D
Yew, it is accepted.
(b) What is the language of this machine?

Let our machine be M.
Ne can vies our machine M as two machines, let us say M_{1} and M_{2}.
(1) M, accepts any string containing any number of only 1's, thus, $\{1\}^{*}, 1,11,111$, etc.
(2) M_{2}, accepts any binary string ending in 0 , thus, $\{0,1\}^{*} 0$.

Therefore, se can use union to create $L(m)$.

3 Note: It is important to include u such that x in our statement.

Question 04
Design an NFA state diagram for the following language:

$$
\left\{w \in\{0,1\}^{*} \mid w \text { contains } 00 \text { or } 11 \text { as a substring }\right\}
$$

Ne can begin by defining what is and isn't include (i.e., build our intuition).

Not: $0,1, \varepsilon, 01,10$, etc.
In: $00,11,0011,000,111,1111,110$, etc.

NA N

- Start state cannot be an accept state
\square Next, we remember that an NFA does not require all transition to include th the entire alphabet and allow multiple state output for a single clement. So, se cant to require 00 or 11 be present.

We note that we now vaunt to allow any combination of 0,1 before and after our require subsisting.

ie., not allow 0,01 , etc. but allow 000,0100 .
so se need to have a self loop of $(0,1)$ and an exit for 0 and 1 .
Thus, we obtain our NFA N, that accepts our language.

DFA Union Closure
Regular languages are closed under union.
What does "closed" mean?

A set S is closed under operation O if $O(S) \in S$.
Let $S=\{a, b, c\}$. Define O as such: $O(a)=b, O(b)=c$, and $O(c)=a$.
Notice that applying O yields elements that are all in set S. So S is closed under O. If O were defined the same but $O(c)=z$, then S is no longer closed under O.

Example
Let us assume th following:

So, a language L is regular if there exists a DFA that recognizes L.
Thus, $L\left(M_{1}\right)$ and $L\left(m_{2}\right)$ are regular by definition.
Thought
Is $L\left(m_{1}\right) \cup L\left(m_{2}\right)$ regular? How would we know and prove?
Idea
Since se know the definition, se can prove by building a DFA for our union language. Ne can begin with "gluing" the stales together.

M_{1}	δ	0	1
	q_{0}	q_{0}	q_{1}
q_{1}	q_{1}	q_{1}	

$$
\begin{array}{ll|ll}
M_{2} & \delta & 0 & 1 \\
\hline & q_{0} & q_{0} & q_{0}
\end{array}
$$

We include All accept states in either $M_{1} \underline{O R} M_{2}$.
so, they become accept states in "glued" states.
Therefore, we obtain a DFA M that accepts $L(m)=L\left(m_{1}\right) \cup L\left(m_{2}\right)$.
And we can see that it is regular by de finition.

Kleene Star Proof

Prove that regular languages are closed under Kleene star.

Relies

Le remember that Mene star is the concatenation of a set ϕ or more times with itself.
eeg. $L^{*}=\{\in\} \cup L \cup L L \cup L L L \cup \ldots$
In class it was shoos that regular languages are closed under concatenation.

- $L_{1} L_{2}$ is regular if L_{1} and L_{2} are regular.

For Mene star, be can take $L_{2}=L_{1}$, so we have $L_{1} L_{1}$ since L_{1} is regular than $L_{1} L_{1}$ is regular.

 equivalent NFA NL
$\rightarrow \longrightarrow$ Thus, it cold stay th same.

De now can create an NFA N to recognize L^{+}
$N=\left\{Q, \varepsilon, \delta, q_{0}, F\right\}$
Add ness start state $q_{0}=q_{\text {now }}, q_{\text {neo }}$ will also be an accept state (ie., $q_{\text {nev }} \in F$).
So, ques will transition to start state of D_{L} via ε (ie., $\left.\delta\left(q_{\text {now }}, \varepsilon\right)=q_{0}{ }^{\text {l }}\right)$.

$$
\rightarrow\left(a_{\infty}\right) \xrightarrow{\varepsilon} \bigcirc \xrightarrow{a} \bigcirc \xrightarrow{b} \bigcirc
$$

The final states of D_{L} will transition to newly added start state ques via ε (i.e., $\left.\delta(a, \varepsilon)=q_{\text {nev }}, a \in F_{L}\right)$.

Proof
If L is a regular language, there exists a $D F A D_{1}$ which recognizes L.

$$
D_{1}=\left\{0_{L}, \Sigma_{l}, \delta_{l}, q_{0}^{l}, F_{l}\right\} .
$$

We construct an NFA N that recognizes L^{*}
$N=\left\{Q, \varepsilon_{L}, \delta, q_{0}, F\right\}$.
Where,

$$
\delta(q, a)=\left\{\begin{array}{l}
\left\{\delta_{1}(q, a)\right\}, q \neq q_{n 00} \text { and } a \in \varepsilon . \\
\left\{q_{n 00}\right\}, q_{0} \in F_{L}, a=\varepsilon . \\
\left\{q_{0}^{2}\right\}, q=q_{n 00}, a=\varepsilon .
\end{array}\right.
$$

$Q=Q_{L} \cup\left\{q_{n \omega}\right\}$
$q_{0}=q_{\text {now }}$
$F=F_{L} \cup\left\{q_{n o 0}\right\}$
We define δ so that for any state $q \in Q$ and $a \in \Sigma_{L}$.

Correctness
General Idea

Let $v \in L^{\dot{\prime}}, \omega=v_{1}, v_{2}, \ldots, v_{\text {, }}$ Where $v_{i} \in L$ or $v=\varepsilon$.

- Since $q_{0} \in F, \varepsilon$ is accepted by N and...
- Since $\delta(a, \varepsilon)=q_{0}, a \in F_{L}$ and $\delta\left(q_{n o w}, \varepsilon\right)=q_{0}^{l}$.
N will loop around to the start state of D_{L} and $C_{0} l_{\text {loo }}$ the states and transitions to only accept strings $v: \in L$ giving $u \in L^{*}$.
Therefore, $L^{*} \subseteq L(N)$.

No u ve want to show that

$$
L(N) \subseteq L^{4}
$$

Let $v \in L(N)$. When computing w ve start a ques followed by 9_{0}^{2}, then the computations follows D_{h}, and finally th computation ends in a final state of $D_{L}, F_{i} \in F_{L}$.

- This computation can end immediately in ques, which would accept ε.
- Ottervise, th computation ends in F_{i}, accepting $s \in L$ or any number of concatenations of s when the computation loops from F_{i} to anew.
Therefore, $L(N) \subseteq L^{*}$.

Reduction Discussion

Reduction...
Problem A: Will Ammar Brush His Hair?
Problem B: Is Angela Happy?

Reduction:

$$
A \longrightarrow B \text { "A reduces to } \mathrm{B} \text { " }
$$

The outcome of A relies on the outcome of B.

Resources

[1] B. Karlov, "On Theory of Regular Languages with the Kleene Star Operation," English, Lobachevskii journal of mathematics, vol. 41, no. 9, pp. 1660-1665, 2020, ISSN: 1995-0802. DOI: https://doi.org/10.1134/S1995080220090164

