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Quantum Computing

�. Describing a quantum system.

�. Describing operations (gates) on a quantum system.

�. Composing multiple qubit quantum systems from smaller ones.

�. Measuring (obtaining classical information from) a quantum system.

Review

Bloch Sphere

Any point on the surface of the Bloch sphere corresponds to a qubit state.

Quantum Algorithms

Qubit states during quantum algorithm: No peaking. Quantum states can not be checked

during a computation without collapsing the state to a classical bit value through

measurement.

Qubit State

A mathematical representation of a qubit.

Superposition: 

Born Rule: 

The classical 0 is measure with probability . The classical 1 is measured with probability 

.

1-Qubit Gates

|ψ⟩ = α|0⟩ + β|1⟩

|α|2 + |β|2 = 1

α,β ∈ C

|α|2

|β|2



Pauli Gates: X-gate (i.e., Quantum Not-Gate), Y-Gate, Z-Gate

Hadamard Gate: H-Gate (Equal Superposition)

S-Gate (Phase Gate), T-Gate (  Gate)

1-Qubit Circuits

Quantum Gates Are Unitary Matrices

A matrix  is unitary if , where  is the identity matrix.

Note:  is equivalent to , , and . It is specifically complex conjugate (a Hermitian

Transpose).

Thus, if  is unitary then...

 is reversible/invertible

 is diagonalizable

, applied to a vector, preserves the norm of the vector.

Note:  is diagonalizable if there exists an invertible matrix  and a diagonal matrix  such

that: .

Quantum Gates

Unitary operation/matrix (requirement for all quantum gate operations).

Single Qubit: Rotation on Surface of Bloch Sphere

Quantum Circuits and Mathematical Descriptions

Dirac Notation: 

π
8

U U †U = I I

U † U ∗ UH U+

U

U †U = UU †

U

U

| det(U) | = 1

U

U P D

P−1UP = D

XH|0⟩



Matrix/Vector Notation:

Note: We notice that the notation is the reverse order of the quantum circuit (i.e., right to left).

We also notice that we do not have to apply  when solving.

Solution 01

Step 1

Step 2

Conclusion

Solution 02

Step 1

Step 2

Conclusion

Solution 03

Step 1
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Applying Quantum Gates

Matrix operators serving as quantum gates must be norm preserving.

Gates applied to quantum state again must yield quantum state.

Quantum Algorithm Output: Measure

Once a qubit is measured the qubit state is destroyed, only classical information (i.e., 0 or 1)

remains.

 = 

 = , measuring 0: 

, , 

XH|0⟩ = X(
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⎣
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|ψ⟩ = α|0⟩ + β|1⟩, |α|2 + |β|2 = 1, α,β ∈ C

|ψ⟩′ = α′|0⟩ + β′|1⟩, |α′|2 + |β′|2 = 1, α′,β′ ∈ C

Z(α|0⟩ + β|1⟩) α|0⟩ − β|0⟩

Y (α|0⟩ + β|1⟩) −iβ|0⟩ + iα|1⟩ | − iβ|2 = |β|2

X|0⟩ = |1⟩ α = 0,β = 1 |β|2 = 1



 = 

 = ,  and 

 = 

Note: Measurements project onto computational basis.
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2-Qubit Quantum Systems

Superposition

Entanglement

Measurement

X(α|0⟩ + β|1⟩) β|0⟩ + α|1⟩)

H|0⟩ |+⟩ α = 1
√2

, |α|2 = 1
2

β = 1
√2

, |β|2 = 1
2

H(α|0⟩ + β|1⟩) 1
√2

(α + β)|0⟩ + 1
√2

(α − β)|1⟩



It consists of two qubits instead of just one.

Computational Basis

2-Qubit Quantum State

Example

 = 

Solution

Remember: In general .

Properties of Tensor Product

Operation to form larger vector spaces (from smaller ones).

Given kets , , , and , and . Then...

|00⟩ = |01⟩ =

|10⟩ = |11⟩ =
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⎤⎥⎦A ⊗ B ≠ B ⊗ A

|ϕ⟩ |ψ⟩ |ρ⟩ |σ⟩ r ∈ R

r(|ϕ⟩ ⊗ |ψ⟩) = (r|ϕ⟩) ⊗ |ψ⟩ = |ϕ⟩ ⊗ (r|ψ⟩)

(|ϕ⟩ + |ψ⟩) ⊗ |ρ⟩ = |ϕ⟩ ⊗ |ρ⟩ + |ψ⟩ ⊗ |ρ⟩

|ρ⟩ ⊗ (|ϕ⟩ + |ψ⟩) = |p⟩ ⊗ |ϕ⟩ + |ρ⟩ ⊗ |ψ⟩

(|ϕ⟩ ⊗ |ψ⟩)† = |ϕ⟩† ⊗ |ψ⟩† = ⟨ϕ| ⊗ ⟨ψ|

(⟨ϕ| ⊗ ⟨ψ|)(|ρ⟩ ⊗ |σ⟩) = ⟨ϕ|ρ⟩ ⟨ψ|σ⟩



Given linear operators  and  and kets  and ...

2-Qubit States

We have seen 2-qubit states that we described as tensor products BUT not every 2-qubit

state can be described as a tensor product.

2-Qubit State in Superposition

 with 

Example

Solution 01

Solution 02

A B |ϕ⟩ |ψ⟩

(A ⊗ B)(|ϕ⟩ ⊗ |ψ⟩) = A|ϕ⟩ ⊗ B|ψ⟩

|ψ⟩ = |ψ1ψ2⟩ = |ψ1⟩ ⊗ |ψ2⟩

|ψ⟩ = α|00⟩ + β|01⟩ + γ|10⟩ + δ|11⟩ |α|2 + |β|2 + |γ|2 + |δ|2 = 1

=
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√2
(|0⟩ + |1⟩) ⊗

1

√2
(|0⟩ + |1⟩)

=
1

2
(|0⟩ + |1⟩) ⊗ (|0⟩ + |1⟩)

=
1

2
(|00⟩ + |01⟩ + |10⟩ + |11⟩)



Slide Deck 01C

Entanglement

Entanglement: A pair of qubits is entangled when the quantum state of each cannot be

described independently of the quantum state of the other.

Two qubits can be entangled using - and -gates:

Example: 

Note: A quantum state is entangled if it is not a tensor product.

Controlled NOT Gate / -Gate

2-Qubit Gate

Qubit  is the control qubit and Qubit  is the target qubit.
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Note: The matrix of red numbers is the Identity Matrix and the matrix of green numbers is the

X Matrix.

Input 

We can also do the following...

Example

Second Slice: 

Third Slice: 

CX =

⎡⎢⎣1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤⎥⎦|ψ⟩ |00⟩ |01⟩ |10⟩ |11⟩

CX|ψ⟩ |00⟩ |01⟩ |11⟩ |10⟩

= =

⎡⎢⎣1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎤⎥⎦⎡⎢⎣αβγδ⎤⎥⎦ ⎡⎢⎣α + 0 + 0 + 0

0 + β + 0 + 0

0 + 0 + 0 + γ

0 + 0 + δ + 0

⎤⎥⎦ ⎡⎢⎣αβδγ⎤⎥⎦CX(α|00⟩ + β|01⟩ + γ|10⟩ + δ|11⟩)
= α|00⟩ + β|01⟩ + γ|11⟩ + δ|10⟩
= α|00⟩ + β|01⟩ + δ|10⟩ + γ|11⟩
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Entanglement

Measuring One Qubit: Automatically, instantly also decides information of other (entangled,

and possibly distant) qubit.

Example
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Solution

If measuring the first qubit results in a 0, then the second qubit is revealed instantly as a 0.

If measuring the first qubit results in a 1, then the second qubit is revealed instantly as a 1.

Note: A quantum state is entangled if it is not a tensor product.

The paradox is only a conflict between reality and your feeling of what reality 'ought to

be'. - Richard Feynman

Bell States

There are four famous entangled states called the Bell states.

Quantum states consisting of two qubits that represent the most basic examples of quantum

entanglement.

States
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Note: Measuring one qubit of a Bell state instantly reveals information of other qubit - in the

form of a classical 0 or 1.

1
√2

(|00⟩ + |11⟩) = |Φ+⟩

1
√2

(|01⟩ + |10⟩) = |Ψ+⟩

1
√2

(|00⟩ + |11⟩) = |Φ−⟩

1
√2

(|01⟩ + |10⟩) = |Ψ−⟩



Bell Basis

The four Bell states build an (orthonormal) basis for :

, 

, 

, 

Questions

Can the target qubit be the top and the control qubit be the bottom (i.e., bottom up

instead of top down)? - Slide 32

Is it impossible or yet to be solved? - Slide 33

Is entanglement only in pairs?

What are shots in quantum probability?

Resources

Quantum Circuits in LaTeX:

https://mirrors.ibiblio.org/CTAN/graphics/pgf/contrib/quantikz/quantikz.pdf
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