SENG 480D - Quantum Algorithms and Software Engineering

Lecture 03 Slide Deck:

• lecture-03-slide-deck-01.pdf

Slide Deck 01A

Quantum Computing

- 1. Describing a quantum system.
- 2. Describing operations (gates) on a quantum system.
- 3. Composing multiple qubit quantum systems from smaller ones.
- 4. Measuring (obtaining classical information from) a quantum system.

Review

Bloch Sphere

Any point on the surface of the Bloch sphere corresponds to a qubit state.

Quantum Algorithms

Qubit states during quantum algorithm: No peaking. Quantum states can not be checked during a computation without collapsing the state to a classical bit value through measurement.

Qubit State

A mathematical representation of a qubit.

- Superposition: $|\psi
 angle=lpha|0
 angle+eta|1
 angle$
- Born Rule: $|\alpha|^2 + |\beta|^2 = 1$
- $lpha,eta\in\mathbb{C}$

The classical 0 is measure with probability $|\alpha|^2$. The classical 1 is measured with probability $|\beta|^2$.

1-Qubit Gates

- Pauli Gates: X-gate (i.e., Quantum Not-Gate), Y-Gate, Z-Gate
- Hadamard Gate: H-Gate (Equal Superposition)
- S-Gate (Phase Gate), T-Gate ($\frac{\pi}{8}$ Gate)

1-Qubit Circuits

Quantum Gates Are Unitary Matrices

A matrix U is unitary if $U^{\dagger}U = I$, where I is the identity matrix.

Note: U^{\dagger} is equivalent to U^* , U^H , and U^+ . It is specifically complex conjugate (a Hermitian Transpose).

Thus, if U is unitary then...

- $U^{\dagger}U = UU^{\dagger}$
- U is reversible/invertible
- U is diagonalizable
- |det(U)| = 1
- *U*, applied to a vector, preserves the norm of the vector.

Note: U is diagonalizable if there exists an invertible matrix P and a diagonal matrix D such that: $P^{-1}UP = D$.

Quantum Gates

Unitary operation/matrix (requirement for all quantum gate operations).

Single Qubit: Rotation on Surface of Bloch Sphere

Quantum Circuits and Mathematical Descriptions

Matrix/Vector Notation:

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Note: We notice that the notation is the reverse order of the quantum circuit (i.e., right to left). We also notice that we do not have to apply $\frac{1}{\sqrt{2}}$ when solving.

Solution 01

Step 1

$$rac{1}{\sqrt{2}}egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}egin{bmatrix} 1 \ 0 \end{bmatrix} = rac{1}{\sqrt{2}}egin{bmatrix} (1 imes 1) + (1 imes 0) \ (1 imes 1) - (1 imes 0) \end{bmatrix}$$

Step 2

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} (0 \times 1) + (1 \times 1) \\ (1 \times 1) - (0 \times 1) \end{bmatrix}$$

Conclusion

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Solution 02

Step 1

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} (0 \times 1) + (1 \times 1) & (0 \times 1) - (1 \times 1) \\ (1 \times 1) + (0 \times 1) & (1 \times 1) - (0 \times 1) \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$

Step 2

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} (1 \times 1) - (1 \times 0) \\ (1 \times 1) - (1 \times 0) \end{bmatrix}$$

Conclusion

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Solution 03

Step 1

$$\begin{split} XH|0\rangle &= X(\frac{1}{\sqrt{2}}|0\rangle \,+\, \frac{1}{\sqrt{2}}|1\rangle) \\ &= \frac{1}{\sqrt{2}}|1\rangle \,+\, \frac{1}{\sqrt{2}}|0\rangle \\ &= \frac{1}{\sqrt{2}} \begin{bmatrix} 0\\1 \end{bmatrix} + \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\0 \end{bmatrix} \\ &= \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \end{split}$$

Applying Quantum Gates

Matrix operators serving as quantum gates must be norm preserving.

$$|\psi
angle = lpha |0
angle + eta |1
angle, \; |lpha|^2 + |eta|^2 = 1, \; lpha, eta \in \mathbb{C}$$

Gates applied to quantum state again must yield quantum state.

$$|\psi
angle'=lpha'|0
angle+eta'|1
angle, \;\; |lpha'|^2+|eta'|^2=1,\;\; lpha',eta'\in\mathbb{C}$$

Quantum Algorithm Output: Measure

Once a qubit is measured the qubit state is destroyed, only classical information (i.e., 0 or 1) remains.

Z(lpha|0
angle+eta|1
angle) = lpha|0
angle-eta|0
angle

$$\alpha \left| 0 \right\rangle - \beta \left| 1 \right\rangle$$

$$\alpha \left| 0 \right\rangle + \beta \left| 1 \right\rangle - Z$$

Y(lpha|0
angle+eta|1
angle) = -ieta|0
angle+ilpha|1
angle, measuring 0: $|-ieta|^2=|eta|^2$

$$-i\beta \left| 0 \right\rangle + i\alpha \left| 1 \right\rangle$$

$$\alpha \left| 0 \right\rangle + \beta \left| 1 \right\rangle - Y$$

X|0
angle=|1
angle , lpha=0,eta=1 , $|eta|^2=1$

X(lpha|0
angle+eta|1
angle) = eta|0
angle+lpha|1
angle)

$$\beta \left| 0 \right\rangle + \alpha \left| 1 \right\rangle$$

$$\alpha \left| 0 \right\rangle + \beta \left| 1 \right\rangle$$

H|0
angle = |+
angle, $lpha=rac{1}{\sqrt{2}}, |lpha|^2=rac{1}{2}$ and $eta=rac{1}{\sqrt{2}}, |eta|^2=rac{1}{2}$

$$H(\alpha|0\rangle + \beta|1\rangle) = \frac{1}{\sqrt{2}}(\alpha + \beta)|0\rangle + \frac{1}{\sqrt{2}}(\alpha - \beta)|1\rangle$$
$$\frac{1}{\sqrt{2}}(\alpha + \beta)|0\rangle + \frac{1}{\sqrt{2}}(\alpha - \beta)|1\rangle$$
$$\alpha|0\rangle + \beta|1\rangle - H$$

Note: Measurements project onto computational basis.

Slide Deck 01B

2-Qubit Quantum Systems

- Superposition
- Entanglement
- Measurement

It consists of two qubits instead of just one.

Computational Basis

$$|00
angle = egin{bmatrix} 1 \ 0 \ 0 \ 0 \ 0 \end{bmatrix} \qquad |01
angle = egin{bmatrix} 0 \ 1 \ 0 \ 0 \ 0 \end{bmatrix} \ |10
angle = egin{bmatrix} 0 \ 1 \ 0 \ 0 \ 1 \ 0 \end{bmatrix} \qquad |11
angle = egin{bmatrix} 0 \ 0 \ 0 \ 1 \ 0 \ 1 \end{bmatrix}$$

2-Qubit Quantum State

Example

|00
angle = |0
angle \otimes |0
angle

Solution

$$|0
angle\otimes|0
angle=egin{bmatrix}1\\0\end{bmatrix}\otimesegin{bmatrix}1\\0\end{bmatrix}=egin{bmatrix}1&egin{bmatrix}1\\0&egin{bmatrix}1\\0\\0\end{bmatrix}\end{bmatrix}=egin{bmatrix}1\\0\\0\\0\end{bmatrix}$$

Remember: In general $A \otimes B \neq B \otimes A$.

Properties of Tensor Product

Operation to form larger vector spaces (from smaller ones).

Given kets $|\phi
angle$, $|\psi
angle$, |
ho
angle, and $|\sigma
angle$, and $r\in\mathbb{R}.$ Then...

- $\bullet \ \ r(|\phi\rangle\otimes|\psi\rangle)=(r|\phi\rangle)\otimes|\psi\rangle=|\phi\rangle\otimes(r|\psi\rangle)$
- $\bullet \ \ (|\phi\rangle+|\psi\rangle)\otimes|\rho\rangle=|\phi\rangle\otimes|\rho\rangle+|\psi\rangle\otimes|\rho\rangle$
- $\bullet \hspace{0.2cm} |\rho\rangle \otimes (|\phi\rangle + |\psi\rangle) = |p\rangle \otimes |\phi\rangle + |\rho\rangle \otimes |\psi\rangle$
- $(\ket{\phi} \otimes \ket{\psi})^{\dagger} = \ket{\phi}^{\dagger} \otimes \ket{\psi}^{\dagger} = \langle \phi | \otimes \langle \psi |$
- $(\langle \phi | \otimes \langle \psi |) (|
 ho \rangle \otimes | \sigma \rangle) = \langle \phi |
 ho
 angle \langle \psi | \sigma
 angle$

Given linear operators A and B and kets $|\phi\rangle$ and $|\psi\rangle$...

• $(A\otimes B)(\ket{\phi}\otimes\ket{\psi})=A\ket{\phi}\otimes B\ket{\psi}$

2-Qubit States

We have seen 2-qubit states that we described as tensor products BUT not every 2-qubit state can be described as a tensor product.

$$\ket{\psi} = \ket{\psi_1\psi_2} = \ket{\psi_1} \otimes \ket{\psi_2}$$

2-Qubit State in Superposition

 $|\psi
angle = lpha |00
angle + eta |01
angle + \gamma |10
angle + \delta |11
angle$ with $|lpha|^2 + |eta|^2 + |\gamma|^2 + |\delta|^2 = 1$

Example

Solution 01

$$egin{aligned} &=rac{1}{\sqrt{2}}(\ket{0}+\ket{1})\otimesrac{1}{\sqrt{2}}(\ket{0}+\ket{1})\ &=rac{1}{2}(\ket{0}+\ket{1})\otimes(\ket{0}+\ket{1})\ &=rac{1}{2}(\ket{00}+\ket{01}+\ket{10}+\ket{11}) \end{aligned}$$

Solution 02

Slide Deck 01C

Entanglement

Entanglement: A pair of qubits is **entangled** when the quantum state of each cannot be described independently of the quantum state of the other.

Two qubits can be entangled using H- and C_X -gates:

Example: $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle)$ $q_{0_0} \quad |0\rangle \quad H$

Note: A quantum state is **entangled** if it is not a tensor product.

Controlled NOT Gate / C_X -Gate

2-Qubit Gate

Qubit q_{0_0} is the control qubit and Qubit q_{0_1} is the target qubit.

Note: The matrix of red numbers is the Identity Matrix and the matrix of green numbers is the X Matrix.

Input $\ket{\psi}$	00 angle	01 angle	10 angle	11 angle
$C_X \psi angle$	00 angle	01 angle	11 angle	10 angle

1	0	0	0	$\lceil \alpha \rceil$		$\lceil \alpha + 0 + 0 + 0 \rceil$		α
0	1	0	0	β	=	0+eta+0+0	=	β
0	0	0	1	γ		$0+0+0+\gamma$		δ
0	0	1	0	$\lfloor \delta \rfloor$		$\lfloor 0+0+\delta+0 floor$		$\lfloor \gamma \rfloor$

We can also do the following...

$$egin{aligned} &C_X(lpha|00
angle+eta|01
angle+\gamma|10
angle+\delta|11
angle)\ &=lpha|00
angle+eta|01
angle+\gamma|11
angle+\delta|10
angle\ &=lpha|00
angle+eta|01
angle+\delta|10
angle+\gamma|11
angle \end{aligned}$$

Example

• Second Slice:
$$rac{1}{\sqrt{2}}(|0
angle+|1
angle)\otimes|0
angle$$

• Third Slice:
$$rac{1}{\sqrt{2}}(\ket{00}+\ket{11})$$

$$\begin{split} C_X(H\otimes I)|00\rangle &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \\ &= \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \\ &= \frac{1}{\sqrt{2}} (\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{bmatrix}) \\ &= \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \end{split}$$

Entanglement

Measuring One Qubit: Automatically, instantly also decides information of other (entangled, and possibly distant) qubit.

Example

Solution

If measuring the first qubit results in a 0, then the second qubit is revealed instantly as a 0.

If measuring the first qubit results in a 1, then the second qubit is revealed instantly as a 1.

Note: A quantum state is **entangled** if it is not a tensor product.

The paradox is only a conflict between reality and your feeling of what reality 'ought to be'. - Richard Feynman

Bell States

There are four famous entangled states called the Bell states.

$$egin{aligned} &rac{1}{\sqrt{2}}(\ket{00}+\ket{11}) & &rac{1}{\sqrt{2}}(\ket{00}-\ket{11}) \ &rac{1}{\sqrt{2}}(\ket{01}+\ket{10}) & &rac{1}{\sqrt{2}}(\ket{01}-\ket{10}) \end{aligned}$$

Quantum states consisting of two qubits that represent the most basic examples of quantum entanglement.

States

Note: Measuring one qubit of a Bell state instantly reveals information of other qubit - in the form of a classical 0 or 1.

Bell Basis

- The four Bell states build an (orthonormal) basis for \mathbb{C}^4 :
 - $\langle \Phi^+ | \Phi^-
 angle$, $\langle \Psi^+ | \Psi^-
 angle$
 - $\langle \Phi^+ | \Psi^+
 angle$, $\langle \Phi^+ | \Psi^-
 angle$
 - $\langle \Phi^-|\Psi^+
 angle$, $\langle \Phi^-|\Psi^angle$

$$|\Phi^+
angle = rac{1}{\sqrt{2}} egin{pmatrix} 1 \ 0 \ 0 \ 1 \end{bmatrix} \qquad \qquad |\Phi^-
angle = rac{1}{\sqrt{2}} egin{pmatrix} 1 \ 0 \ 0 \ -1 \end{bmatrix}$$

$$|\Psi^+
angle = rac{1}{\sqrt{2}} egin{bmatrix} 0 \ 1 \ 1 \ 0 \end{bmatrix} \qquad \qquad |\Psi^+
angle = rac{1}{\sqrt{2}} egin{bmatrix} 0 \ 1 \ -1 \ 0 \end{bmatrix}$$

Questions

- Can the target qubit be the top and the control qubit be the bottom (i.e., bottom up instead of top down)? Slide 32
- Is it impossible or yet to be solved? Slide 33
- Is entanglement only in pairs?
- What are shots in quantum probability?

Resources

Quantum Circuits in LaTeX:

https://mirrors.ibiblio.org/CTAN/graphics/pgf/contrib/quantikz/quantikz.pdf