SENG 480D - Quantum Algorithms and Software Engineering

Theory and implementation of quantum algorithms including challenges and opportunities for quantum software developers and engineers using Qiskit, Q# SDK, Jupyter Notebooks, and Interactive Textbooks.

Lecture 02 Slide Deck:

- lecture-02-slide-deck-01.pdf
- lecture-02-slide-deck-02.pdf

Slide Deck 01

Quantum Circuit

Computational routine consisting of coherent quantum operations on qubits: ordered sequence of quantum gates, measurements (and resets).

1-Qubit Quantum Systems: Circuits and Gates

Matrices

Matrices sometimes serve as quantum (logic) gates. They are linear operators.

 $M_{n,m}(\mathbb{C})$: set of all n x m complex matrices

Note: Quantum gates are (n x n) matrices.

 $A\in M_{n,n}(\mathbb{C}): \;\; a_{ij}\in\mathbb{C}$

Matrix Operations

- Multiply by Scalar: $\alpha A_{ij} = (\alpha A)_{ij}$
- Addition: $A_{ij} + Bij = (A + B)_{ij}$
- Multiply Matrices: A x B
- Tensor Product: $A \bigotimes B$
- Complex Conjugate A^* : $(A^*)_{ij} = (A_{ij})^*$
- Transpose A^T : $(A^T)_{ij} = A_{ji}$
- Conjugate Transpose A^{\dagger} : $(A^{\dagger})_{ij} = A^{*}_{ji}$
- Inverse A^{-1} : $AA^{-1} = I$

Note: Matrices are not commutative. In general A, B: n x n matrices. $AB \neq BA$.

Properties of Matrix Multiplication

Let $A,B,C\in M_{n,n}(\mathbb{C})...$

- (AB)C = A(BC) = ABC
- A(B + C) = AB + AC
- (A + B)C = AC + BC

- $\lambda(AB) = (AB)\lambda = (\lambda A)B = A(\lambda B), \lambda \in \mathbb{C}$
- $(AB)^* = A^*B^*$, $(AB)^T = B^TA^T$, $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$

Vectors

Vectors are special cases of matrices.

Multiply by Scalar:

$$lpha egin{bmatrix} b_1 \ b_n \end{bmatrix} = egin{bmatrix} lpha b_1 \ lpha b_n \end{bmatrix}$$

Addition:

$$egin{bmatrix} b_1 \ b_n \end{bmatrix} + egin{bmatrix} c_1 \ c_n \end{bmatrix} = egin{bmatrix} b_1 + c_1 \ b_n + c_n \end{bmatrix}$$

Applying Quantum Gates

Matrix operators serving as quantum gates: norm preserving. In other words, quantum gates are norm preserving (n x n) matrices.

Quantum gates are unitary matrices.

Unitary Matrices and Properties

A matrix U is unitary if $U^{\dagger}U = I$, where I is the identity matrix.

If U is unitary then...

- $U^{\dagger}U = UU^{\dagger}$
- $U^\dagger = U^- 1$
- U is reversible
- U is diagonalizable
- |det(U)| = 1
 - U, applied to a vector, preserves the norm of the vector.

Note:

$$det(U)=\sum_{j=1}^n (-1)^{i+j} U_{ij} M_{ij}$$

where U_{ij} is the element in U at position (i, j) and M_{ij} is the determinant of the matrix obtained by removing from U the *i*-th row and *j*-th column.

X-Gate

The NOT-Gate/X-Gate is usually represented by an X or + sign.

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Therefore...

$$egin{bmatrix} 0 & 1 \ 1 & 0 \end{bmatrix} egin{bmatrix} lpha \ eta \end{bmatrix} = egin{bmatrix} (0)(lpha) + (1)(eta) \ (1)(eta) + (0)(lpha) \end{bmatrix}$$

Remember: Multiplying a matrix by a vector.

$$egin{bmatrix} a_{11} & a_{1n} \ a_{21} & a_{2n} \end{bmatrix} egin{bmatrix} a_1 \ a_n \end{bmatrix} = egin{bmatrix} (a_{11})(a_1) + (a_{1n})(a_n) \ (a_{21})(a_1) + (a_{2n})(a_n) \end{bmatrix}$$

- Input $|0\rangle$ apply X and obtain $|1\rangle$.
- Input $|1\rangle$ apply X and obtain $|0\rangle$.
- Input $\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ apply *X* and obtain $\begin{bmatrix} \beta \\ \alpha \end{bmatrix}$.

In other words...

$$egin{aligned} X(lpha|0
angle+eta|1
angle) &= lpha X|0
angle+eta X|1
angle \ &= lpha|1
angle+eta|0
angle \ &= eta|0
angle+lpha|1
angle \end{aligned}$$

Z-Gate

The Z-Gate is represented by a Z sign.

$$Z = egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}$$

Therefore...

$$egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix} egin{bmatrix} lpha \ eta \end{bmatrix} = egin{bmatrix} lpha + 0 \ 0 - eta \end{bmatrix} = egin{bmatrix} lpha \ -eta \end{bmatrix}$$

- Input $|0\rangle$ apply Z and obtain $|0\rangle$.
- Input $|1\rangle$ apply Z and obtain $-|1\rangle.$
- Input $\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ apply *X* and obtain $\begin{bmatrix} \alpha \\ -\beta \end{bmatrix}$.

In other words...

$$egin{aligned} Z(lpha|0
angle+eta|1
angle) &= lpha Z|0
angle+eta Z|1
angle \ &= lpha|0
angle-eta|1
angle \end{aligned}$$

Y-Gate

The Y-Gate is represented by a \mathbf{Y} sign.

$$Z = egin{bmatrix} 0 & -i \ i & 0 \end{bmatrix}$$

Therefore...

$$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} (0)(\alpha) - (i)(\beta) \\ (i)(\alpha) - (0)(\beta) \end{bmatrix} = \begin{bmatrix} -(i)(\beta) \\ (i)(\alpha) \end{bmatrix}$$

- Input $|0\rangle$ apply Y and obtain $i|1\rangle$.
- Input |1
 angle apply Y and obtain -i|0
 angle.
- Input $\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ apply *Y* and obtain $\begin{bmatrix} -i\beta \\ i\alpha \end{bmatrix}$.

In other words...

$$=-ieta|0
angle+ilpha|1
angle$$

Hadamard Gate

The Hadamard Gate is represented by an H sign.

$$H=rac{1}{\sqrt{2}}egin{bmatrix} 1&1\ 1&-1 \end{bmatrix}$$

Therefore...

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$

- Input |0
angle apply H and obtain...

$$egin{aligned} rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix} egin{bmatrix} 1 \ 0 \end{bmatrix} &= rac{1}{\sqrt{2}} egin{bmatrix} 1+0 \ 1-0 \end{bmatrix} \ &= rac{1}{\sqrt{2}} egin{bmatrix} 1 \ 1 \end{bmatrix} \ &= rac{1}{\sqrt{2}} egin{bmatrix} 1 \ 1 \end{bmatrix} \ &|+
angle &= rac{1}{\sqrt{2}} (|0
angle + |1
angle) \end{aligned}$$

• Input |1
angle apply H and obtain...

$$egin{aligned} rac{1}{\sqrt{2}} egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix} egin{bmatrix} 0 \ 1 \end{bmatrix} &= rac{1}{\sqrt{2}} egin{bmatrix} 0+1 \ 0-1 \end{bmatrix} \ &= rac{1}{\sqrt{2}} egin{bmatrix} 1 \ -1 \end{bmatrix} \ &= rac{1}{\sqrt{2}} egin{bmatrix} 1 \ -1 \end{bmatrix} \ &|-
angle &= rac{1}{\sqrt{2}} (|0
angle - |1
angle) \end{aligned}$$

• Input $\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$ apply *H* and obtain...

$$rac{1}{\sqrt{2}}egin{bmatrix} 1 & 1 \ 1 & -1 \end{bmatrix}egin{bmatrix} lpha \ eta\end{bmatrix} = rac{1}{\sqrt{2}}egin{bmatrix} lpha+eta\ lpha-eta\end{bmatrix}$$

In other words...

$$egin{aligned} H(lpha|0
angle+eta|1
angle) &= lpha H|0
angle+eta H|1
angle \ &= rac{lpha}{\sqrt{2}}(|0
angle+|1
angle)+rac{eta}{\sqrt{2}}(|0
angle=|1
angle) \ &= rac{lpha+eta}{\sqrt{2}}|0
angle+rac{lpha-eta}{\sqrt{2}}|1
angle \end{aligned}$$

Pauli-Gates

X, Y, and Z - gates: Pauli Gates

Quantum Gates

Unitary operation / matrix (requirement for all quantum gates!).

Single Qubit: Rotation on surface of Bloch Sphere.

Cancellation of Gate Operations

While all quantum gates are reversible (i.e., $U^{\dagger}U = I$) some quantum gates even cancel themselves when applied twice in a row.

$$II = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = egin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = I$$

• X

$$XX = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0+1 & 0+0 \\ 0+0 & 1+0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

• Z

$$ZZ = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I$$

• *H*

$$HH = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1+1 & 1-1 \\ 1-1 & 1+1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = I$$

Matrices where $U^{\dagger} = U$ are called Hermitian.

Note: Given matrix M, we show MM = I.

Phase Shift Gates

$$P(\phi) = egin{bmatrix} 1 & 0 \ 0 & e^{i\phi} \end{bmatrix}$$

If $\phi = \frac{\pi}{4}$: T-Gate; $P(\frac{\pi}{4}) = T$. If $\phi = \frac{\pi}{2}$: S-Gate; $P(\frac{\pi}{2}) = S$ Note: $e^{i\frac{\pi}{2}} = i$ and $S = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$.

Important Basis Vectors

A basis consist of a set or pairwise orthogonal vectors.

- Computational Basis States: $|0\rangle$ and $|1\rangle$

$$\langle \ 0 \ | \ 1 \
angle = [1 \quad 0] \begin{bmatrix} 0 \\ 1 \end{bmatrix} = (1)(0) + (0)(1) = 0$$

H rotates qubit on surface of Bloch Sphere.

•
$$|+\rangle = H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

• $|-\rangle = H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$
 $\langle +|-\rangle = \begin{bmatrix}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{bmatrix}\begin{bmatrix}\frac{1}{\sqrt{2}}\\-\frac{1}{\sqrt{2}}\end{bmatrix} = (\frac{1}{\sqrt{2}})^2 - (\frac{1}{\sqrt{2}})^2 = 0$

Kets: Inner Product and Outer Product

Inner Product (Dot Product)...

$$\langle \, \psi \, | \, \phi \,
angle = \sum_{i=1}^d lpha_i^* \, eta_i^*$$

where $\langle \psi |$ is the row vector and $|\phi \rangle$ is the column vector.

 $\langle \ \psi \ | \ \phi \
angle = 0$ if and only if $|\psi
angle$, $|\phi
angle$ are orthogonal, where...

$$|\psi
angle = egin{bmatrix} lpha_1\ dots\ lpha_n \end{bmatrix}, \ |\phi
angle = egin{bmatrix} eta_1\ dots\ eta_n \end{bmatrix}$$

Outer Product...

$$| \, \psi \,
angle \, \langle \, \phi \, | = egin{bmatrix} lpha_1 eta_1^* & lpha_1 eta_2^* & \dots & lpha_1 eta_d^* \ dots & dots & dots \ lpha_d eta_1^* & lpha_d eta_2^* & \dots & lpha_d eta_d^* \end{bmatrix}$$

where $|\psi\rangle$ is the column vector and $\langle \phi |$ is the row vector.

Quantum Algorithm Output: Measure

Once a qubit is measured the qubit state is destroyed, only classical information (i.e., 0 or 1) remains.