
CSC 370 - Midterm 02: Design Theory for Relational Databases - Study Sheet

Relations and Functional Dependencies (FD’s)

Relational Data Model Attributes: Columns (set of at-
tributes). Schema: Relation and attributes (i.e., R(A1, ..., An)).
Tuples: Unique row of values. Domains: Restriction on Data
Types. Keys: K ⊆ A, A ∈ R (e.g., R(A1, ..., An)).
FD A (antecedent) functionally determines B (consequent).

Closure and Keys

Logical Rules Logical Inferences: A → B.
Combining Rule: A → B, A → C; A → BC. Splitting Rule:
A → BC; A → B, A → C. Transitivity: A → B, B → C;
A → C. Triviality: A → B if B ⊆ A. Semi-Triviality: A → B
and C = B ∩A, C can be drop from B.

Closure of An Attribute Set Maximum set of attributes
determined by X (i.e., X+).

(Super)Key of A Relation Let C be the set of attributes
of relation R and A ⊆ C. A is a superkey iff {A}+ = C. A is
a key iff A is a superkey and there is no set A′ ∈ C for A′ is a
superkey. R is a func. from minimal domain A onto range C.

Algorithm Closure of A Set of Attributes
Input: {A1, ..., An} and FD’s S. Output: {A1, ..., An}+.
1. Split FD’s of S into singletons. 2. Initialize X to be
{A1, ..., An}. 3. Repeatedly find FD B1, ..., Bm → C; B is
in the set of attributes X but C is not and add C. 4. Return
when there are no more FD’s that contribute to X.

Minimal Bases and Projecting FD’s

Closure of A Set of FD’s The closure of all possible subsets
of the attributes (2n).

Basis of A Set of FD’s Two sets of FD’s are equal iff they
have the same closing set. Thus, F ′ is a basis for F if the closure
in every subset of attributes is identical in F and F ′.

Minimal Basis (MB) Given a set of FD’s F , we say that
they form a MB iff: 1. Every FD has a singleton RHS. 2. If
any FD is removed or If we remove any attribute from the LHS
of any FD, we no longer have a basis.

Projecting FD’s Given a set of FD’s and a relation S with
attributes C, we can produce a set of FD’s for S by 1. Calcu-
lating the closure of every non-empty subset c of C to create a
FD: c → c+. 2. Simplify the set of 2|n| − 1 FD’s into a MB.

Algorithm Projecting A Set of FD’s
Input: Relations R with a set of FD’s S and R1 computed by
R1 = πL(R). Output: The set of FD’s T that hold in R1.
1. T is initially empty. 2. For each set of attributes X; X ⊆ L,
compute X+. This computation is performed with respect to
the set of FD’s S, and may involve attributes that are in the
schema of R but not in R1. Add to T all non-trivial FD’s
X → A; A ∈ X+ ∧ L. 3. Now, T is a basis for the FD’s
that hold in R1, but may not be a MB.

Boyce-Codd Normal Form (BCNF)

Decomposing Relations A relation R with attributes
{A1, ..., An}. A decomposition of R splits it into two relations: S
with attributes {B1, ..., Bm} and T with attributes {C1, ..., Ck};

A = B ∪ C, S = π(B)(R), and T = π(C)(R). Note: We can
join each tuple of T to a unique tuple of S on the common A’s;
A ∈ T ∧ S AND a key for either T or S.

BCNF A relation R with attribute set C is in BCNF iff
for every non-trivial FD on R, {A1, ..., An} → {B1, ..., Bm},
{A1, ..., An} is a superkey of R (i.e., A+ = C).

Algorithm BCNFDecomp(R0, F0) (Nondeterministic)
Input: Relation R0 with attribute set C0 and FD’s F0.
Output: A decomposition of R0 with all relations in BCNF.
1. If R0 is in BCNF, Return R0. 2. Select a BCNF viola-
tion, X → Y . 3. Compute X+. 4. Let R1 := X+. 5.
Let R2 := (C \ X+) ∪ X. 6. Project F0 to get FD for R1

and R2 denoted F1 and F2. Return BCNFDecomp(R1, F1) ∪
BCNFDecomp(R2, F2).

Third Normal Form (3NF)

3NF A relation R over attributes C with FD’s F (X → Y )
is in 3NF iff every FD is in BCNF OR every attribute in Y is
prime (an attribute that is a member of some key).

Algorithm Synthesis of 3NF Relations (Nondeterministic)
Input: A relation R and a set F of FD’s that hold for R.
Output: A decomposition of R with all relations in 3NF. It is
a lossless join and preserves all FD’s.
1. Find a MB for F , say G. 2. For each FD X → A in G, use
XA as the schema of one of the relations in the decomposition.
3. If none of the relation schemas from step 2 is a superkey for
R add another relation whose schema is a key for R.

Relational Algebra and Constraints

Set-Theoretic Operators: R and S must have identical
schemas. Union: Retains all tuples. Intersection: Retains any
tuples that are in R and S. Difference: Retains any tuples that
only appears in the LHS.

Rename: Obtain S(B,C,D) with ρS(B,C,D)(R(A,B,C)).
Project: Apply π(B,C)(R(A,B,C)) to drop column A and any
new duplicate tuples from R. Select: Apply σA=a1(R(A,B,C))
to drop all tuples where A ̸= a1. Cross Product (×): Combine
every tuple pairwise. Natural Join (▷◁): Combine only tuples
that agree on common columns. Theta Join (▷◁Condition): Com-
bine only tuples for which the specified condition is true (take
the product, select the correct tuples).

Constraint A limitation on data. R = ∅: The value of Rmust
be empty (or R ⊆ ∅). R ⊆ S: Every tuple in the result of R
must be in the result of S (or R− S = ∅).

Referential Integrity Constraint Asserts that a value ap-
pearing in one context also appears in another, related context.
πA(R) ⊆ πB(S) and πA(R)− πB(S) = ∅.

Key Constraints Express algebraically the constraint that a
certain attribute or set of attributes is a key for a relation.

ρA(R) ▷◁A.a = B.a ∧ (A.b ̸= B.b ∨ A.c ̸= B.c) ρB(R) = ∅


