CSC 370 - Midterm 02: Design Theory for Relational Databases - Study Sheet

Relations and Functional Dependencies (FD’s)

Relational Data Model Attributes: Columns (set of at-
tributes). Schema: Relation and attributes (i.e., R(A1, ..., 4,)).
Tuples: Unique row of values. Domains: Restriction on Data
Types. Keys: K C A, A€ R (e.g., R(44, ..., Ay)).

FD A (antecedent) functionally determines B (consequent).

Closure and Keys

Logical Rules Logical Inferences: A — B.
Combining Rule: A — B, A — C; A — BC. Splitting Rule:

A — BC; A - B, A — C. Transitivity: A - B, B — C;
A — C. Triviality: A — B if B C A. Semi-Triviality: A — B
and C'= BN A, C can be drop from B.

Closure of An Attribute Set Maximum set of attributes
determined by X (i.e., XT).

(Super)Key of A Relation Let C be the set of attributes
of relation R and A C C. A is a superkey iff {A}T = C. Ais
a key iff A is a superkey and there is no set A’ € C for A’ is a
superkey. R is a func. from minimal domain A onto range C.

Algorithm Closure of A Set of Attributes

Input: {4;,...,A4,} and FD’s S. Output: {A;,...,A,}T.

1. Split FD’s of S into singletons. 2. Initialize X to be
{A1,..,A,}. 3. Repeatedly find FD By,...,B,, - C; B is
in the set of attributes X but C is not and add C. 4. Return
when there are no more FD’s that contribute to X.

Minimal Bases and Projecting FD’s

Closure of A Set of FD’s
of the attributes (27).
Basis of A Set of FD’s Two sets of FD’s are equal iff they
have the same closing set. Thus, F” is a basis for F if the closure
in every subset of attributes is identical in F' and F”.

Minimal Basis (MB) Given a set of FD’s F', we say that
they form a MB iff: 1. Every FD has a singleton RHS. 2. If
any FD is removed or If we remove any attribute from the LHS
of any FD, we no longer have a basis.

The closure of all possible subsets

Projecting FD’s Given a set of FD’s and a relation S with
attributes C', we can produce a set of FD’s for S by 1. Calcu-
lating the closure of every non-empty subset ¢ of C' to create a
FD: ¢ — ¢t. 2. Simplify the set of 21"l — 1 FD’s into a MB.

Algorithm Projecting A Set of FD’s

Input: Relations R with a set of FD’s S and R; computed by
R; = 7, (R). Output: The set of FD’s T that hold in R;.

1. T is initially empty. 2. For each set of attributes X; X C L,
compute X*. This computation is performed with respect to
the set of FD’s S, and may involve attributes that are in the
schema of R but not in R;. Add to T all non-trivial FD’s
X =+ A, Ae Xt AL 3. Now, T is a basis for the FD’s
that hold in R;, but may not be a MB.

Boyce-Codd Normal Form (BCNF)

Decomposing Relations A relation R with attributes
{41,...,An}. A decomposition of R splits it into two relations: S
with attributes {Bjy, ..., B} and T with attributes {C1, ..., Cr };

A=BUC, S =mpg)(R), and T = m)(R). Note: We can
join each tuple of T' to a unique tuple of S on the common A’s;
Ae€TAS AND a key for either T or S.

BCNF A relation R with attribute set C is in BCNF iff
for every non-trivial FD on R, {44,....,4,} — {Bi1,..., Bn},
{A1,..., A, } is a superkey of R (i.e., AT = C).

Algorithm BCNFDecomp(Ry, Fy) (Nondeterministic)
Input: Relation Ry with attribute set Cy and FD’s Fy.
Output: A decomposition of Ry with all relations in BCNF.
1. If Ry is in BCNF, Return Ry. 2. Select a BCNF viola-
tion, X — Y. 3. Compute X*. 4. Let Ry := X*. 5.
Let Ry := (C\ X*t)U X. 6. Project Fy to get FD for R,
and Ry denoted F; and F». Return BCNFDecomp(Ry, Fy) U

BCNFDecomp(Rz, F).

Third Normal Form (3NF)

3NF A relation R over attributes C' with FD’s F' (X — Y)
is in 3NF iff every FD is in BCNF OR every attribute in Y is
prime (an attribute that is a member of some key).

Algorithm Synthesis of 3NF Relations (Nondeterministic)
Input: A relation R and a set F' of FD’s that hold for R.
Output: A decomposition of R with all relations in 3NF. It is
a lossless join and preserves all FD’s.

1. Find a MB for F, say G. 2. For each FD X — A in G, use
X A as the schema of one of the relations in the decomposition.
3. If none of the relation schemas from step 2 is a superkey for
R add another relation whose schema is a key for R.

Relational Algebra and Constraints

Set-Theoretic Operators: R and S must have identical
schemas. Union: Retains all tuples. Intersection: Retains any
tuples that are in R and S. Difference: Retains any tuples that
only appears in the LHS.

Rename:  Obtain S(B,C,D) with pgp.c,p)(R(A,B,C)).
Project: Apply m(p,cy(R(A, B,C)) to drop column A and any
new duplicate tuples from R. Select: Apply oa4—q1(R(A, B,C))
to drop all tuples where A # al. Cross Product (x): Combine
every tuple pairwise. Natural Join (<1): Combine only tuples
that agree on common columns. Theta Join (Kgondition): Com-
bine only tuples for which the specified condition is true (take
the product, select the correct tuples).

Constraint A limitation on data. R = (): The value of R must
be empty (or R C @)). R C S: Every tuple in the result of R
must be in the result of S (or R — S = 0).

Referential Integrity Constraint Asserts that a value ap-
pearing in one context also appears in another, related context.

ma(R) C7p(S) and ma(R) — mp(S) = 0.

Key Constraints Express algebraically the constraint that a
certain attribute or set of attributes is a key for a relation.

PA(R) ™MAq=B.an(Ab+BbvAcB.c) PB(R) =0



