UNIVERSITY OF VICTORIA

EXAMINATION #3 (SQL & Transactions)

VERSION A

CSC 370: Database Systems

14 Nov 2022

13.00 - 13.45 UTC-7

(0 hours, 45 minutes)

This examination consists of ten equally-weighted multiple choice questions. You should record your solutions in the provided bubble sheet. Each question has a single best solution; if you record more than one solution for the same question, you will receive a score of zero on that question. If you answer x questions correctly, then your grade on the exam will be x/10, i.e., you must answer at least five questions correctly to pass. This exam is closed-book: you are welcome to bring with you empty pages and a single-sided A4/US letter note sheet, but you cannot bring other notes nor electronic devices to your desk. Please confirm immediately after the exam starts that you have all 5 pages and ten questions.

Sections: A01, A02, A03

CRN's: 10874, 10875, 14303

Instructor: Mr. Yichun Zhao

Data			
x	¥	z	
1	3	2	
2	4	3	
3	5	NULL	

You are provided with the table "Data", in which *y* is the primary key. Which of the three provided queries could plausibly insert at least one new tuple to the table? There are **no syntax errors** in the options.

- (a) INSERT INTO Data (SELECT x, y+1, z FROM Data); // this creates duplicates for y
- (b) INSERT INTO Data(x) (SELECT z FROM Data); // no guarantee y has default values which are distinct

(c) INSERT INTO Data(y) (SELECT z FROM Data LIMIT 1);

Question 2

You are provided with the table "Data", in which *y* is the primary key. Which of the four provided queries could remove all tuples (and just the tuples) from the table? There are **no syntax errors** in the options.

- (a) DELETE FROM Data WHERE y != NULL; // should use `IS NOT NULL`
- (b) DROP TABLE Data; // this deletes the meta data as well

(c) DELETE FROM Data WHERE x < 100 and 1;

Question 3

Which of the scenarios below best describes an example of the *Atomicity* property being **violated**?

- (a) The data from a committed transaction is lost after a power outage
- (b) A transaction that contains two queries commits after executing just one of them
- (c) A transaction causes non-deterministic (i.e., random) behaviour

(d) A transaction is aborted before it completes

Question 4

Given the relations:

```
adult(<u>id</u>, age)
adult_backup(id, age), where adult_backup.id is a foreign key to adult.id
```

Currently, the two tables have exactly the same data. Which of the behaviours written below is correct regarding the effect of this trigger?

```
CREATE TRIGGER update_after

AFTER UPDATE ON adult

FOR EACH ROW

UPDATE adult_backup SET id = NEW.id, age = NEW.age

WHERE id = OLD.id AND age = OLD.age;
```

- (a) This trigger ensures the tuples in both tables are being updated accordingly.
- (b) This trigger makes sure `adult_backup` is always exactly a backup copy of `adult`. // does not consider insertion / deletion
- (c) This trigger is invalid.

Question 5

Which of the following statements creates an index on the table R created below when using a MySQL database? There are **no syntax errors** in the options.

```
CREATE TABLE R(a int, b int, c int, d int);
```

- (a) ALTER TABLE R ADD PRIMARY KEY(c); (c) CREATE INDEX idx ON R(d);
- (b) ALTER TABLE R MODIFY B INT UNIQUE; (d) all of the above

Given relation R with the following data:

x	У
1	5
2	0

Two transactions, T1 and T2, execute concurrently:

T1	Т2
BEGIN TRANSACTION;	BEGIN TRANSACTION;
UPDATE R SET $y = y-5$ where $x=1$;	SELECT SUM(y) from R;
UPDATE R SET $y = y+5$ where $x=2$;	COMMIT;
COMMIT;	

Which isolation level is the **most strict** that can be applied to T2, if the SELECT query returns the value 0?

- (a) READ UNCOMMITTED // clearly dirty read happens for T2 before T1 commits
- (b) REPEATABLE READ
- (c) SERIALISABLE
- (d) READ COMMITTED

Given the following example guery:

SELECT * FROM a_table WHERE id > 100 ORDER BY c;

The relation is defined as:

a_table(id, a, b, c) where no indexes exist.

Given the following possible improvements of run time of this query. Which of the option is correct?

- 1. Make id the primary key.
- 2. Create a two-column index on (id, c).
- 3. Create a two-column index on (c, id).
- 4. Create an index on c.
- (a) 1. and 2. have the same effect for this query. // 2 is the better option
- (b) 2. and 3. have the same effect for this guery. // 2 is the better option
- (c) 3. and 4. have the same effect for this query.

Question 8

Given the following relations:

and given the following query:

 $Instructor(\underline{v\ number},\ specialization)$

Class(<u>code</u>, name)

Teaches(v_number, code, semester)

SELECT c.name FROM Class as c, Teaches as t WHERE c.code=t.code GROUP BY c.name

HAVING COUNT(v number) >= 2;

Which of the following is equivalent to the query above?

- (c) SELECT c.name FROM Teaches as t NATURAL JOIN Class as c GROUP BY c.name ORDER BY COUNT(v_number) DESC LIMIT 2;

The following example query is executed in a newly created empty database in MySQL: CREATE TABLE J (a INT PRIMARY KEY, b INT NOT NULL);

Which of the following options is **invalid,** meaning not being able to be executed or throwing out error(s) when it is executed? There are **no syntax errors** in the options.

- (a) CREATE TABLE K (c INT PRIMARY KEY, d INT, FOREIGN KEY(d) REFERENCES **J(b)**); // no constraint on J(b) being unique to ensure referential integrity
- (b) CREATE TABLE K (c INT UNIQUE KEY, d INT);
 ALTER TABLE K ADD FOREIGN KEY (d) REFERENCES K(c);
- (d) CREATE TABLE K (c INT PRIMARY KEY, d INT);
 ALTER TABLE J ADD FOREIGN KEY (a) REFERENCES K(c);

Question 10

A pair of tables and a SQL query are specified below. Indicate which of the specified tuples would be returned by this query if executed on these tables using MySQL with default setting

S				
t	u	v		
1	NULL	'a'		
2	4	'b'		
3	2	'a'		
4	5	'b'		
5	3	'a'		
6	2	'b'		

R				
×	У	z		
1	1	'Alice'		
1	2	'Eve'		
1	3	'Eve'		
2	4	'Carol'		
3	5	'Eve'		
4	6	'Bob'		

SELECT t,u,v,y,z FROM S RIGHT OUTER JOIN R ON (R.x = S.u);

- (a) (NULL, NULL, NULL, 3, 'Eve')
- (b) (2,4,'b',6,'Bob')

- (c) Both (a) and (b) would be returned
- (d) Neither (a) or (b) would be returned