
CSC 370

Activity Worksheet:
Transaction Isolation Levels

Mr. Yichun Zhao

Fall 2022

1



This worksheet should provide practice questions for better understanding the impact of isolation levels
on concurrency in databases. In these questions, you are given a set of transactions that will execute
concurrently. You should specify all of the possible database end states for each of the three isolation
levels: read uncommitted, read committed, and read repeatable. Assume the following initial state:

𝑅(𝑥, 𝑦) = {(1, 1), (2, 1), (3, 3)}
𝑆(𝑦, 𝑧) = {(3, 1), (1, 2), (0, 2)}.

Page 2



Questions
1. START TRANSACTION ; −− t 1

SELECT @y := y FROM R WHERE x = 3 ; −− query1
UPDATE S SET z = 1 WHERE y = @y; −− query2

COMMIT;

START TRANSACTION ; −− t 2
SELECT @y := y FROM R WHERE x = 3 ; −− query3
UPDATE S SET z = 2 WHERE y = @y; −− query4

COMMIT;

Solution:

Page 3



2. START TRANSACTION ; −− t 1
SELECT @y := y FROM R WHERE x = 3 ; −− query1
UPDATE S SET z = z + @y WHERE y = @y; −− query2

COMMIT;

START TRANSACTION ; −− t 2
SELECT @y := y FROM R WHERE x = 3 ; −− query3
UPDATE S SET z = z + @y WHERE y = @y; −− query4

COMMIT;

Solution:

Page 4



3. START TRANSACTION ; −− t 1
SELECT @y := y FROM R WHERE x = 3 ; −− query1
UPDATE S SET z = z + @y WHERE y = @y; −− query2
UPDATE R SET x = NULL WHERE x = 3 ; −− query3

COMMIT;

START TRANSACTION ; −− t 2
SELECT @y := y FROM R WHERE x = 3 ; −− query4
UPDATE S SET z = z + @y WHERE y = @y; −− query5
UPDATE R SET x = 4 WHERE x = 3 ; −−query6

COMMIT;

Solution:

Page 5



Solutions

Question 1
Both transactions only modify S and only by setting it to a constant, one of which is its initial value; so,
the database ”end state” after the two transactions execute can only be one of two options (difference
emphasised):

𝑆(𝑦, 𝑧) = {(3, 1), (1, 2), (0, 2)}
𝑆(𝑦, 𝑧) = {(3, 2), (1, 2), (0, 2)}

Let’s work through each possible ordering of the queries and identify the result DB and the isolation
levels in which it could occur:

< query1, query2, query3, query4 >

This is a serialised execution of the transactions (t1 occurred entirely before t2), so could occur at any
isolation level.

The result will be result 2, as the last statement to execute will be the one that sets S.z=2.

< query3, query4, query1, query2 >

This is also a serialised execution of the transactions (t2 occurred entirely before t1), so could occur at
any isolation level.

The result will be result 1, as the last statement to execute will be the one that sets S.z=1.

< query1, query3, query4, query2 >

Here, t2 occurred in the middle of t1. However, the write to S.z by t2 does not affect the read of R.y by
t1. So, both transactions could take-out read-only locks on R.y. This could occur at an isolation level of
repeatable read or lower.

The result will be result 1, as the last statement to execute will be the one that sets S.z=1, overwriting
query 4.

< query1, query3, query2, query4 >

Here, queries for t1 and t2 were alternated. However, as above, the writes to S.z are not affected by the
reads of R.y. So, both transactions could take-out read-only locks on R.y. This could occur at an isolation
level of repeatable read or lower.

The result will be result 2, as the last statement to execute will be the one that sets S.z=2, overwriting
query 2.

Other permutations are the same as above, just with the role of t1 and t2 reversed.

Page 6



Question 2
These transactions are more complex, so let’s convert them explicitly to a series of reads and writes

Transaction1
Read (R.x, R.y) –r1
Read (S.y, S.z) –r2
Write S.z –w1

Transaction2
Read (R.x, R.y) –r3
Read (S.y, S.z) –r4
Write S.z –w2

Observe too that the write uses the previously read values from R.y and S.z. That is the primary difference
compared to the previous question. Let’s work through different read/write sequences. For simplicity, we
will assume that w1 occurs before w2 (the logic is similar if reversed).

< r1, r2, w1, r3, r4, w2 >

This is a fully serialised execution sequence that could happen at any isolation level. The result will be
𝑆(𝑦, 𝑧) = {(3, 7), (1, 2), (0, 2)}.

< r1, r2, r3, w1, r4, w2 >

This is not serialised, but w1 does not affect the result of r3, as these are on different tables. We could
achieve this sequence with a read-only shared lock. It could occur at a repeatable read or lower isolation
level. The result will again be 𝑆(𝑦, 𝑧) = {(3, 7), (1, 2), (0, 2)}.

< r1, r2, r3, r4, w1, w2 >

In this case, r4 is a dirty read; the value is changed by w1 after r4 and before it is used by w2. It can only
occur at an isolation level of read uncommitted. The result will be 𝑆(𝑦, 𝑧) = {(3, 4), (1, 2), (0, 2)}, as w2
overwrites the change made by w1.

Page 7



Question 3
Again, we have a quite complex one, so let’s explicitly indicate the reads and writes

Transaction1
Read (R.x, R.y) –r1
Read (S.y, S.z) –r2
Write (S.z) –w1
Read (R.x) –r3
Write (R.x) –w2

Transaction2
Read (R.x, R.y) –r4
Read (S.y, S.z) –r5
Write (S.z) –w3
Read (R.x) –r6
Write (R.x) –w4

Compared to the previous question, now we also write to R.x, the value read at the start of the transaction.

< r1, r2, w1, r3, w2, r4, r5, w3, r6, w4 >

This corresponds to a fully serialised execution, which could happen at any isolation level. The result is
𝑅(𝑥, 𝑦) = {(1, 1), (2, 2), (𝑁𝑈𝐿𝐿, 3)} and 𝑆(𝑦, 𝑧) = {(3, 4), (1, 2), (0, 2)}.

< r1, r2, w1, r3, r4, w2, r5, w3, r6, w4 >

Observe that this already creates a dirty read, as w2 changes the value read by r4. Thus, this execution
sequence is only possible with an isolation level of read uncommitted. In fact, there are no non-
serialised execution orders for these transactions that does not involve a dirty read. This leads to
double-incremented S.z, because both transactions set @y successfully:𝑅(𝑥, 𝑦) = {(1, 1), (2, 2), (4, 3)}
and 𝑆(𝑦, 𝑧) = {(3, 7), (1, 2), (0, 2)}.

< r1, r2, w1, r3, r4, r5, w3, r6, w4, w2 >

In this case, we have multiple dirty reads, which coincidentally cancel each other out. Although t1 and t2
are going to double-increment S.z, one of them overwrites the other’s changes and we end up with the same
result as serialised execution: 𝑅(𝑥, 𝑦) = {(1, 1), (2, 2), (𝑁𝑈𝐿𝐿, 3)} and 𝑆(𝑦, 𝑧) = {(3, 4), (1, 2), (0, 2)}.

Observe that there are two other possibilities that can be obtained by swapping t1 and t2 in the above two
cases:

𝑅(𝑥, 𝑦) = {(1, 1), (2, 2), (𝑁𝑈𝐿𝐿, 3)} and 𝑆(𝑦, 𝑧) = {(3, 7), (1, 2), (0, 2)}
𝑅(𝑥, 𝑦) = {(1, 1), (2, 2), (4, 3)} and 𝑆(𝑦, 𝑧) = {(3, 4), (1, 2), (0, 2)}

Page 8


