
CSC 370

Activity Worksheet:
Intro SQL

Mr. Yichun Zhao

Fall 2022

Notes
This worksheet provides a series of practice questions for writing and interpreting SQL queries. We will
use a dataset extracted from an Anthropology research paper from 1977 that studied the bifurcation of a
university’s karate club’s membership based on ideological and organisational disagreement. It is now a
well-known dataset for social network analysis, called Zachary’s karate club. I have converted it into a
relational schema and set of tables below. I have constructed fictitious names for the club members, as

the original dataset was anonymised. The graph is undirected, and I have represented only one canonical
edge, i.e., the ordered pair (i, j), i < j. The “num contexts” attributes refers to the number of other

contexts outside karate club (e.g., at the bar or in classes together) in which that pair of members also
socialised together.

In the first part of worksheet, you are given a SQL query and expected to describe in plain English the
intent of the query and to show the output of running that query on those tables. In the second part of the
worksheet, you are only given a plain English description of the query, and you should write it in SQL.

1

http://www1.ind.ku.dk/complexLearning/zachary1977.pdf
https://en.wikipedia.org/wiki/Zachary%27s_karate_club

Schema
Member(id, name, faction, faction strength, post split club)
Club(id, label)
Faction(id, label)
Relationship(member1, member2, num contexts)

id label
1 Mr. Hi
2 John

Table 1: Faction

id label
1 Mr. Hi’s
2 Officers’

Table 2: Club

Page 2

id name faction fs psc id name faction fs psc
1 Alice 1 strong 1 18 Werner 1 weak 1
2 Bob 1 strong 1 19 Xi NULL NULL 2
3 Carol 1 strong 1 20 Yuri 1 weak 1
4 Dave 1 strong 1 21 Zane 2 strong 2
5 Eve 1 strong 1 22 Antonio 1 weak 1
6 Farisha 1 strong 1 23 Babak 2 strong 2
7 Gregoire 1 strong 1 24 Claire 2 weak 2
8 Hamza 1 strong 1 25 Dierdre 2 weak 2
9 Ninad 2 weak 1 26 Einar 2 strong 2
10 Omar NULL NULL 2 27 Farouk 2 strong 2
11 Panagiotis 1 strong 1 28 Ghada 2 strong 2
12 Quinn 1 strong 1 29 Hiro 2 strong 2
13 Ravi 1 weak 1 30 Iniko 2 strong 2
14 Saalima 1 weak 1 31 Javier 2 strong 2
15 Tarik 2 strong 2 32 Kumar 2 strong 2
16 Ulysses 2 weak 2 33 Ludmila 2 strong 2
17 Vivienne NULL NULL 1 34 Manpreet 2 strong 2

Table 3: Member

m1 m2 nc m1 m2 nc m1 m2 nc m1 m2 nc
1 2 4 1 3 5 1 4 3 1 5 3
1 6 3 1 7 3 1 8 2 1 9 2
1 11 2 1 12 3 1 13 2 1 14 3
1 18 2 1 20 2 1 22 2 1 32 2
2 3 6 2 4 3 2 8 4 2 14 5
2 18 1 2 20 2 2 22 2 2 31 2
3 4 3 3 8 4 3 9 5 3 10 1
3 14 3 3 28 2 3 29 2 3 33 3
4 8 3 4 13 3 4 14 3 5 7 2
5 11 3 6 7 5 6 11 3 6 17 3
7 17 3 9 31 3 9 33 4 9 34 3
10 34 2 14 34 3 15 33 3 15 34 2
16 33 3 16 34 4 19 33 1 19 34 2
20 34 1 21 33 3 21 34 1 23 33 2
24 26 5 24 28 4 24 30 2 24 33 5
24 34 4 25 26 2 25 28 3 25 32 2
26 32 7 27 30 4 27 34 2 28 34 4
29 32 2 29 34 2 30 33 3 30 34 2
31 33 3 31 34 3 32 33 4 32 34 4
33 34 5

Table 4: Relationship

Page 3

Questions
1. Interpreting SQL Queries

SELECT ‘ name ’
FROM ‘Member ’

JOIN ‘ F a c t i o n ’ ON (‘ f a c t i o n ’ = ‘ F a c t i o n ’ . ‘ i d ’)
WHERE ‘ f a c t i o n s t r e n g t h ’ = ‘ weak ’

AND ‘ l a b e l ’ = ‘Mr . Hi ’ ;

Solution: The methodical approach is to:

1. perform all the joins to get the set of candidate tuples.

2. remove all tuples that don’t match all the selection predicates.

3. remove attributes that are not in the projection; don’t forget to include when you show the result!

Then one should end up with:

name
Ravi
Saalima
Werner
Yuri
Antonio

Table 5: Result

This retrieves the names of everyone who is weakly associated with Mr. Hi’s faction.

Page 4

2. Interpreting SQL Queries

SELECT ‘M2’ . ‘ name ’
FROM ‘Member ’ AS ‘M1’

, ‘Member ’ AS ‘M2’
WHERE ‘M1’ . ‘ name ’ = ‘ E i n a r ’

AND ‘M1’ . ‘ f a c t i o n ’ = ‘M2’ . ‘ f a c t i o n ’ ;

Solution:

Page 5

3. Interpreting SQL Queries

SELECT ‘M1’ . ‘ name ’ , ‘M2’ . ‘ name ’
FROM ‘Member ’ AS ‘M1’

JOIN ‘Member ’ AS ‘M2’
ON (‘M1’ . ‘ f a c t i o n ’ = ‘M2’ . ‘ f a c t i o n ’)

WHERE ‘M1’ . ‘ p o s t s p l i t c l u b ’ <> ‘M2’ . ‘ p o s t s p l i t c l u b ’ ;

Solution:

Page 6

4. Interpreting SQL Queries

SELECT ‘M1’ . ‘ name ’ , ‘M2’ . ‘ name ’
FROM ‘Member ’ AS ‘M1’

JOIN ‘ R e l a t i o n s h i p ’
ON (‘M1’ . ‘ i d ’ = ‘ member1 ’)

JOIN ‘Member ’ AS ‘M2’
ON (‘M2’ . ‘ i d ’ = ‘ member2 ’)

WHERE ‘ n u m c o n t e x t s ’ > 5 ;

Solution:

Page 7

5. Interpreting SQL Queries

SELECT ‘M2’ . ‘ name ’
FROM ‘Member ’ AS ‘M1’

JOIN ‘ R e l a t i o n s h i p ’
ON (‘M1’ . ‘ i d ’ = ‘ member1 ’)

JOIN ‘Member ’ AS ‘M2’
ON (‘M2’ . ‘ i d ’ = ‘ member2 ’)

WHERE ‘M1’ . ‘ name ’ LIKE ‘ f%’ ;

Solution:

Page 8

6. Writing SQL Queries: Retrieve the names of every unique pair of club members who are weakly
associated to the same faction.

Solution:

7. Writing SQL Queries: Retrieve the names of everyone who is in the same post-split club as Werner.

Solution:

8. Writing SQL Queries: Retrieve the names of everyone with whom Manpreet shares at least two other
social contexts outside the karate club. (You can exploit that she has the highest id).

Solution:

9. Writing SQL Queries: Retrieve all triplets of names of club members in the same faction who are all
in at least three external social contexts with each other.

Solution:

Page 9

Solutions

Question 1
The methodical approach is to:

1. perform all the joins to get the set of candidate tuples.

2. remove all tuples that don’t match all the selection predicates.

3. remove attributes that are not in the projection; don’t forget to include when you show the result!

Then one should end up with:

name
Ravi
Saalima
Werner
Yuri
Antonio

Table 6: Result

This retrieves the names of everyone who is weakly associated with Mr. Hi’s faction.

Page 10

Question 2
Again, let’s go through this slowly. We take the opposite approach as to when constructing a query.

1. First, we join together all the tables. As we have a comma, not a JOIN clause, this is a cross product
between Member and itself. So we will get each member paired with each other member (including
a copy of itself), leading to 34(34) = 1156 tuples, each with 10 attributes.

2. Next, we can apply the selection predicates. This will remove all the tuples where the name on the
left hand side is not Einar and the faction on the left hand side and right hand side do not match. In
other words, we are only left with the pairs of members that are in the same faction as Einar and
were the left hand side is Einar. This leaves sixteen tuples, still defined over ten attributes.

3. Finally, we can apply the projection operator and discard all attributes except the name on the
right-hand side. Note that duplicates will not necessarily be removed like they would be in datalog
or relational algebra.

The final result is thus as below:

name
Ninad
Tarik
Ulysses
Zane
Babak
Claire
Dierdre
Einar
Farouk
Ghada
Hiro
Iniko
Javier
Kumar
Ludmila
Manpreet

Table 7: Result

This query retrieves the names of everyone in the same faction as ‘Einar’.

Page 11

Question 3
Again, let’s go through this slowly. We take the opposite approach as to when constructing a query.

1. First, we join together all the tables. This time we have a JOIN clause, again between Member and
itself. The join key is ‘factions’; so we will get each member paired with each other member in the
same (non-NULL) faction (including a copy of itself), leading to 15(15) + 16(16) = 481 tuples,
each with 10 attributes.

2. Next, we can apply the selection predicates. This will remove all the tuples where the post split club
is the same. This leaves only 2(15) tuples, namely the tuple with Ninad on one side and everyone
else in faction 2 on the other. Ninad is no longer paired with himself because of the inequality on
post split club.

3. Finally, we can apply the projection operator and discard all attributes except the names on each
side.

The final result is thus as below:

This query retrieves the ordered pairs of names of everyone in the same faction but different clubs, i.e.,
the “defectors”.

Page 12

M1.name M2.name
Ninad Tarik
Ninad Ulysses
Ninad Zane
Ninad Babak
Ninad Claire
Ninad Dierdre
Ninad Einar
Ninad Farouk
Ninad Ghada
Ninad Hiro
Ninad Iniko
Ninad Javier
Ninad Kumar
Ninad Ludmila
Ninad Manpreet
Tarik Ninad
Ulysses Ninad
Zane Ninad
Babak Ninad
Claire Ninad
Dierdre Ninad
Einar Ninad
Farouk Ninad
Ghada Ninad
Hiro Ninad
Iniko Ninad
Javier Ninad
Kumar Ninad
Ludmila Ninad
Manpreet Ninad

Table 8: Result

Page 13

Question 4
Again, let’s go through this slowly. We take the opposite approach as to when constructing a query.

1. First, we join together all the tables. This time we JOIN three tables, including Member to itself.
The join key is both of the foreign key sin Relationship to the primary keys of the two respective
instances of Member; so we will get one join tuple for each tuple of Relationship, i.e., 77 tuples.
These will have 5 + 3 + 5 = 13 attributes.

2. Next, we can apply the selection predicates. This will discard all tuples in which the num contexts
attribute has a value of 5 or less, leaving just 2 tuples.

3. Finally, we can apply the projection operator and discard all attributes except the names on each
side.

The final result is thus as below:

M1.name M2.name
Bob Carol
Einar Kumar

Table 9: Result

This query retrieves the names of unordered pairs of club members who have at least six social connections
outside of karate club.

Page 14

Question 5
Again, let’s go through this slowly. We take the opposite approach as to when constructing a query.

1. First, we join together all the tables. This is the same join as in the previous question; so we will
get one join tuple for each tuple of Relationship, i.e., 77 tuples, with 5 + 3 + 5 = 13 attributes.

2. Next, we can apply the selection predicates. This will discard all tuples in which the name of
the first person does not match the case-insensitive pattern starting with an ‘f’. Farisha (id 6) and
Farouk (id 27) are the only names that match this pattern. There are only 3 + 2 = 5 tuples in the
join result that match.

3. Finally, we can apply the projection operator and discard all attributes except the second name.

The final result is thus as below:

M2.name
Gregoire
Panagiotis
Vivienne
Iniko
Manpreet

Table 10: Result

This query retrieves the names of connections with a higher id of anyone who has a name starting with
‘F’.

Page 15

Question 6
To answer this systematically, we take the same approach to defining the logic as we did with Datalog:

1. We identify the attributes that are needed for the final projection or to satisfy selection predicates:
here we need two club member names, a faction, and a faction strength.

2. We identify the tables that those attributes are found in: here we need two instances of Member.

3. We determine how to join those tables together in a way consistent with the question: here we have
a self-join with a requirement for unique pairs, so we will join on equality of faction, equality of
faction strength, and a strict inequality on id.

4. We determine any remaining selection predicates that are needed: here we need to select on
faction strength being ‘weak’.

5. Finally, we project onto the final set of attributes: here, it is just the names.

SELECT ‘M1’ . ‘ name ’ , ‘M2’ . ‘ name ’
FROM ‘Member ’ AS ‘M1’

JOIN ‘Member ’ AS ‘M2’
ON (‘M1’ . ‘ f a c t i o n ’ = ‘M2’ . ‘ f a c t i o n ’

AND ‘M1’ . ‘ f a c t i o n s t r e n g t h ’ = ‘M2’ . ‘ f a c t i o n s t r e n g t h ’
AND ‘M1’ . ‘ i d ’ < ‘M2’ . ‘ i d ’)

WHERE ‘M1’ . ‘ f a c t i o n s t r e n g t h ’ = ‘ weak ’ ;

Page 16

Question 7
To answer this systematically, we take the same approach to defining the logic as we did with Datalog:

1. attributes: member name, post split club for two copies of Member.

2. tables: two instances of Member.

3. join: self-join Member on post split club and inequality on id.

4. selection: the first Member’s name should be ‘Werner’.

5. Finally, we project onto the final set of attributes: here, it is just the second name (i.e., not ‘Werner’).

SELECT ‘M2’ . ‘ name ’
FROM ‘Member ’ AS ‘M1’

JOIN ‘Member ’ AS ‘M2’
ON (‘M1’ . ‘ p o s t s p l i t c l u b ’ = ‘M2’ . ‘ p o s t s p l i t c l u b ’

AND ‘M1’ . ‘ i d ’ <> ‘M2’ . ‘ i d ’)
WHERE ‘M1’ . ‘ name ’ = ‘ Werner ’ ;

Page 17

Question 8
To answer this systematically, we take the same approach to defining the logic as we did with Datalog:

1. attributes: member name for two copies of Member, also num contexts.

2. tables: two instances of Member and Relationship.

3. join: We can join each instance of member using the foreign keys member1 and member2 in
Relationship. We will exploit the id here and assume that Manpreet is member2 in a connection.

4. selection: the second Member’s name should be ‘Manpreet’ and num contexts should be >= 2.

5. Finally, we project onto the final set of attributes: here, it is just the first name (i.e., not ‘Manpreet’).

SELECT ‘M1’ . ‘ name ’
FROM ‘Member ’ AS ‘M1’

JOIN ‘ R e l a t i o n s h i p ’
ON (‘M1’ . ‘ i d ’ = ‘ member1 ’)

JOIN ‘Member ’ AS ‘M2’
ON (‘M2’ . ‘ i d ’ = ‘ member2 ’)

WHERE ‘M2’ . ‘ name ’ = ‘ Manpreet ’
AND ‘ n u m c o n t e x t s ’ >= 2 ;

Page 18

Question 9
To answer this systematically, we take the same approach to defining the logic as we did with Datalog:

1. attributes: member name for three copies of Member, also num contexts for three copies of
Relationship.

2. tables: three instances of Member and three instances of Relationship.

3. join: We can join each instance of member using the foreign keys member1 and member2 in
Relationship. We will do this three times to get all three relationship context counts for each pair
of the three club members.

4. selection: num contexts should be >= 3 for all three relationships.

5. Finally, we project onto the final set of attributes: here, it is just the three member names.

SELECT ‘M1’ . ‘ name ’ , ‘M2’ . ‘ name ’ , ‘M3’ . ‘ name ’
FROM ‘Member ’ AS ‘M1’

JOIN ‘ R e l a t i o n s h i p ’ AS ‘R1 ’
ON (‘M1’ . ‘ i d ’ = ‘R1 ’ . ‘ member1 ’)

JOIN ‘Member ’ AS ‘M2’
ON (‘M2’ . ‘ i d ’ = ‘R1 ’ . ‘ member2 ’)

JOIN ‘ R e l a t i o n s h i p ’ AS ‘R2 ’
ON (‘M2’ . ‘ i d ’ = ‘R2 ’ . ‘ member1 ’)

JOIN ‘Member ’ AS ‘M3’
ON (‘M3’ . ‘ i d ’ = ‘R2 ’ . ‘ member2 ’)

JOIN ‘ R e l a t i o n s h i p ’ AS ‘R3 ’
ON (‘M1’ . ‘ i d ’ = ‘R3 ’ . ‘ member1 ’

AND ‘M3’ . ‘ i d ’ = ‘R3 ’ . ‘ member2 ’)
WHERE ‘R1 ’ . ‘ n u m c o n t e x t s ’ >= 3

AND ‘R2 ’ . ‘ n u m c o n t e x t s ’ >= 3
AND ‘R3 ’ . ‘ n u m c o n t e x t s ’ >= 3 ;

Page 19

