
CSC 370

Activity Worksheet:
Grouping & Sorting

Mr. Yichun Zhao

Fall 2022

Notes
This worksheet provides a series of practice questions for writing and interpreting SQL queries that

plausibly involve sub-queries. We will continue to use the Zachary’s karate club dataset from the
previous worksheets, which has been copied again here for convenience.

In the first part of worksheet, you are given a SQL query and expected to describe in plain English the
intent of the query and to show the output of running that query on those tables. In the second part of the
worksheet, you are only given a plain English description of the query and you should write it in SQL.

1

https://en.wikipedia.org/wiki/Zachary%27s_karate_club

Schema
Member(id, name, faction, faction strength, post split club)
Club(id, label)
Faction(id, label)
Relationship(member1, member2, num contexts)

id label
1 Mr. Hi
2 John

Table 1: Faction

id label
1 Mr. Hi’s
2 Officers’

Table 2: Club

Page 2

id name faction fs psc id name faction fs psc
1 Alice 1 strong 1 18 Werner 1 weak 1
2 Bob 1 strong 1 19 Xi NULL NULL 2
3 Carol 1 strong 1 20 Yuri 1 weak 1
4 Dave 1 strong 1 21 Zane 2 strong 2
5 Eve 1 strong 1 22 Antonio 1 weak 1
6 Farisha 1 strong 1 23 Babak 2 strong 2
7 Gregoire 1 strong 1 24 Claire 2 weak 2
8 Hamza 1 strong 1 25 Dierdre 2 weak 2
9 Ninad 2 weak 1 26 Einar 2 strong 2
10 Omar NULL NULL 2 27 Farouk 2 strong 2
11 Panagiotis 1 strong 1 28 Ghada 2 strong 2
12 Quinn 1 strong 1 29 Hiro 2 strong 2
13 Ravi 1 weak 1 30 Iniko 2 strong 2
14 Saalima 1 weak 1 31 Javier 2 strong 2
15 Tarik 2 strong 2 32 Kumar 2 strong 2
16 Ulysses 2 weak 2 33 Ludmila 2 strong 2
17 Vivienne NULL NULL 1 34 Manpreet 2 strong 2

Table 3: Member

m1 m2 nc m1 m2 nc m1 m2 nc m1 m2 nc
1 2 4 1 3 5 1 4 3 1 5 3
1 6 3 1 7 3 1 8 2 1 9 2
1 11 2 1 12 3 1 13 2 1 14 3
1 18 2 1 20 2 1 22 2 1 32 2
2 3 6 2 4 3 2 8 4 2 14 5
2 18 1 2 20 2 2 22 2 2 31 2
3 4 3 3 8 4 3 9 5 3 10 1
3 14 3 3 28 2 3 29 2 3 33 3
4 8 3 4 13 3 4 14 3 5 7 2
5 11 3 6 7 5 6 11 3 6 17 3
7 17 3 9 31 3 9 33 4 9 34 3
10 34 2 14 34 3 15 33 3 15 34 2
16 33 3 16 34 4 19 33 1 19 34 2
20 34 1 21 33 3 21 34 1 23 33 2
24 26 5 24 28 4 24 30 2 24 33 5
24 34 4 25 26 2 25 28 3 25 32 2
26 32 7 27 30 4 27 34 2 28 34 4
29 32 2 29 34 2 30 33 3 30 34 2
31 33 3 31 34 3 32 33 4 32 34 4
33 34 5

Table 4: Relationship

Page 3

Questions
1. Interpreting and Simplifying SQL Queries

SELECT ‘ l a b e l ’ AS ‘ c l u b ’ , COUNT(∗)
FROM ‘Member ’

JOIN ‘ Club ’
ON (‘ p o s t s p l i t c l u b ’ = ‘ Club ’ . ‘ i d ’)

GROUP BY ‘ l a b e l ’ ;

Solution:

Page 4

2. Interpreting and Simplifying SQL Queries

SELECT ‘ Club ’ . ‘ l a b e l ’ AS ‘ c l u b ’ , COUNT(∗)
FROM ‘Member ’

JOIN ‘ Club ’
ON (‘ p o s t s p l i t c l u b ’ = ‘ Club ’ . ‘ i d ’)

Join ‘ F a c t i o n ’
ON (‘ f a c t i o n ’ = ‘ F a c t i o n ’ . ‘ i d ’)

WHERE (‘ Club ’ . ‘ l a b e l ’ LIKE ‘%Hi%’ AND ‘ F a c t i o n ’ . ‘ l a b e l ’ NOT LIKE
‘%Hi%’)
OR (‘ Club ’ . ‘ l a b e l ’ NOT LIKE ‘%Hi%’ AND ‘ F a c t i o n ’ . ‘ l a b e l ’ LIKE

‘%Hi%’)
GROUP BY ‘ Club ’ . ‘ l a b e l ’ ;

Solution:

Page 5

3. Interpreting and Simplifying SQL Queries

SELECT ‘ name ’
FROM ‘Member ’ AS ‘M1’
WHERE EXISTS (

SELECT ∗
FROM ‘ R e l a t i o n s h i p ’

JOIN ‘Member ’ AS ‘M2’
ON (‘ i d ’ = ‘ member1 ’)

WHERE ‘M1’ . ‘ i d ’ = ‘ member2 ’
AND ‘ name ’ = ‘ J a v i e r ’) ;

Solution:

Page 6

4. Interpreting and Simplifying SQL Queries

SELECT ‘ name ’ , ‘ l a b e l ’ AS ‘ f a c t i o n ’ , COUNT(∗)
FROM ‘Member ’ AS ‘M1’

JOIN (
SELECT ‘ member1 ’ AS ‘ u ’ , ‘ member2 ’ AS ‘ v ’
FROM ‘ R e l a t i o n s h i p ’

UNION ALL
SELECT ‘ member2 ’ AS ‘ u ’ , ‘ member1 ’ AS ‘ v ’
FROM ‘ R e l a t i o n s h i p ’)

ON (‘ u ’ = ‘ i d ’)
JOIN ‘ F a c t i o n ’
ON (‘ f a c t i o n ’ = ‘ F a c t i o n ’ . ‘ i d ’)

GROUP BY ‘ name ’
HAVING COUNT(∗) >= 5 ;

Solution:

Page 7

5. Writing SQL Queries: For each club member, determine the maximum strength connection that they
have.

Solution:

6. Writing SQL Queries: For each club member, determine with whom they have the maximum strength
connection of all their connections.

Solution:

7. Writing SQL Queries: For each unique, ordered pair of clubs and factions, determine the total number
of weak and strong faction associations, ordered by the sum of those.

Solution:

8. Writing SQL Queries: A triad is a 3-clique or 3-cycle in a graph. For each club member, determine
the number of unique triads they are in.

Solution:

9. Writing SQL Queries: Triadic closure refers to a real-world phenomenon in social networks where
the friends of your friends are usually also your friends. This can be interpreted as a large percentage
of connected vertex triplets that you are in are triads. Determine for each person:

• The number of connected vertex triplets that include them in the Relationships graph.

• The number of triads that include them.

• The ratio of triads to vertex triplets above (i.e., the triadic closure ratio), which you should use
as the sort key for the query result.

Solution:

Page 8

Solutions

Question 1
Logically, we apply grouping, aggregation and having clauses prior to projection, and then apply sorting
last:

1. Here we join club to member, using the foreign key in member. This will yield as many tuples as
members with non-NULL clubs and the sum of their attributes, i.e., 34 tuples and 7 attributes.

2. There is no selection in this query.

3. Now we group by ‘label’; i.e., we create one output tuple for each unique ‘label’ (or “equivalence
class”) in our intermediate solution. There are only two of these. We assign each intermediate tuple
to one of those groups so that each group has a set of tuples (17 each).

4. We project onto ‘label’ (renamed as ‘club’) and use the count aggregation function on its group:
this simply returns the group size.

club COUNT(*)
Mr. Hi’s 17
Officers’ 17

Table 5: Result

This query retrieves the name of each club and the number of members in it.

Page 9

Question 2
Logically, we apply grouping, aggregation and having clauses prior to projection, and then apply sorting
last:

1. Here we join club and faction to member, using the foreign keys in member. This will again yield
as many tuples as members with non-NULL clubs and the sum of their attributes, i.e., 31 tuples and
9 attributes.

2. We filter those results to only those tuples in which the club and faction labels for the tuple have
exactly one appearance of the string ‘%Hi%’. This leaves only one tuple: {(9, ‘Ninad’, 2, ‘weak’,
1, 1, ‘Mr. Hi’s, 2, ‘John’)}.

3. Now we group by ‘Club’.‘label’; i.e., we create one output tuple for each unique ‘label’ (or
“equivalence class”) in our intermediate solution. This time, there is only one distinct club label.
We assign each (i.e., the only) intermediate tuple to that group.

4. We project onto ‘Club’.‘label’ (renamed as ‘club’) and use the count aggregation function on its
group: this simply returns the group size.

club COUNT(*)
Mr. Hi’s 1

Table 6: Result

This query retrieves the name of each club and the number of members that defected to it from the other
faction.

Page 10

Question 3
Logically, we apply grouping, aggregation and having clauses prior to projection, and then apply sorting
last:

1. Here we join two instances of member to relationship, using its two foreign keys to member. Finally,
we join faction to the first instance of member, using member’s foreign key to faction. This will
yield as many tuples as relationships that involve a first member with a non-NULL faction and the
sum of their attributes, i.e., 74 tuples and 15 attributes.

2. We filter out tuples where the relationship is between two members from the same faction. Only 9
tuples remain.

3. Now we group the remaining tuples by the id of the first instance of member; i.e., we create one
output tuple for each unique tuple from Member that appears in the first instance in our intermediate
solution. There are only five of these. We assign each intermediate tuple to one of those groups so
that each group has a set of tuples.

4. We apply a second filter to groups where we discard groups that don’t have at least 2 tuples assigned
to them. This discards the groups for member id’s 2, 14, and 20, leaving only those for id’s 1 and 3
left.

5. We project onto the group’s key (‘M1’.‘id’), ‘M1’.‘name’ (which is functionally determined by the
group’s key), the label of the first member’s faction (which is also functionally determined by the
group’s key), and finally use the count aggregation function on its group: this simply returns the
group size.

6. Finally, we sort the output in descending order of COUNT(*), i.e., the group size.

‘M1’.‘id’ ‘M1’.‘name’ faction COUNT(*)
3 Carol Mr. Hi 4
1 Alice Mr. Hi 2

Table 7: Result

This query retrieves the name and faction of each club member who has external social connections with
at least two club members from the other faction, also reporting the tally as a descending sort key. It
considers only directed edges.

Page 11

Question 4
This problem involves a sub-query as a table in our join clause, so let’s resolve that first:

1. This takes a union of two results, so it is effectively two queries. However, each is simpler than cases
that we have already solved on this worksheet. It joins two instances of member to Relationship
using the two foreign keys, then only retains the member id keys. The second query does the same
but reverses the order of the ids. Each one will produce 77 tuples with 2 attributes. The UNION
ALL clause will perform a bag union, so we end up with 154 tuples over 2 attributes in total. This
corresponds to taking every edge (u, v) and adding edge (v, u). It enables us to no longer worry
about whether one club member has a lower id than another one or not.

Logically, we apply grouping, aggregation and having clauses prior to projection, and then apply sorting
last:

1. We join member to the first id of the sub-query result, leveraging that the sub-query has returned
foreign keys to member from relationship. This will yield as many tuples as the sub-query result,
i.e., 154 tuples, over 7 attributes. We also join to this the faction, which adds two attributes but
loses the 6 tuples involving a member with a NULL faction. This leaves 148 tuples.

2. There are no selection predicates.

3. Now we group the remaining tuples by the name of the member. Recall that 3 members were
discarded because they had NULL factions; so, there will be 31 groups.

4. We apply a second filter to groups where we discard groups that don’t have at least 5 tuples assigned
to them. This leaves only 10 groups.

5. Finally, we project onto the member’s name, the label of the member’s faction, and finally use the
count aggregation function on its group: this simply returns the group size. Observe that faction is
not determined by name, though! So this query will throw an error! Nonetheless, I have included
below a result for a modification to the query that uses MAX(‘faction’) to see how the logic plays
out.

name MAX(‘label’) COUNT(*)
Alice Mr. Hi 16
Bob Mr. Hi 9
Carol Mr. Hi 10
Dave Mr. Hi 6
Ninad John 5
Saalima Mr. Hi 5
Claire John 5
Kumar John 6
Ludmila John 12
Manpreet John 16

Table 8: Result

This query retrieves the name, faction, and number of connections for everyone with at least five connec-
tions. It processes edges bidirectionally.

Page 12

Question 5
The “for each” phrasing is a strong indication that we will need grouping. The “maximum” term clearly
requires aggregation. Let’s apply the same general approach as before:

1. The attributes that we will need are distinct club member ids and maximum strength.

2. Both of these attributes come from Relationship. The only catch is that the member id could appear
in either of two foreign keys: member1 or member2. We can resolve this using the UNION ALL
approach from the previous question.

3. There are no selection predicates.

4. Since we want an aggregate value defined per club member, it makes sense to group by this attribute.

5. Finally, we project onto member id and take MAX(nc) from the set of tuples in that group.

SELECT ‘ member1 ’ , MAX(‘ n u m c o n t e x t s ’)
FROM (SELECT ‘ member1 ’ , ‘ member2 ’ , ‘ n u m c o n t e x t s ’ FROM ‘

R e l a t i o n s h i p s ’
UNION ALL SELECT ‘ member2 ’ , ‘ member1 ’ , ‘ n u m c o n t e x t s ’ FROM ‘

R e l a t i o n s h i p s ’)
GROUP BY ‘ member1 ’ ;

Page 13

Question 6
This is a trickier one than the previous question, because we cannot say that there will be only one
connection per club member for whom they have the maximum strength. Thus, we need to set this up as
a sub-query with a sub-goal to retrieve the maximum strength connection (i.e., the previous question) and
a main goal of retrieving all connections that club member has with that connection strength.

SELECT ∗
FROM Member AS ‘M1’

JOIN (SELECT ‘ member1 ’ , ‘ member2 ’ , ‘ n u m c o n t e x t s ’ FROM ‘
R e l a t i o n s h i p ’

UNION ALL SELECT ‘ member2 ’ , ‘ member1 ’ , ‘ n u m c o n t e x t s ’ FROM ‘
R e l a t i o n s h i p ’)

ON (‘M1’ . ‘ i d ’ = ‘ member1 ’)
WHERE ‘ n u m c o n t e x t s ’ = (

SELECT MAX(‘ n u m c o n t e x t s ’)
FROM ‘ R e l a t i o n s h i p ’
WHERE ‘ member1 ’ = ‘M1’ . ‘ i d ’

OR ‘ member2 ’ = ‘M1’ . ‘ i d ’) ;

Page 14

Question 7
Again, we have the “for each” phrasing, this time of the pair (club, faction), and, like question (a), all the
attributes in the projection are unique for that pair. Thus, we will use a group by here again:

1. We need club id and faction id, to identify the groups; we also need faction strength for the
aggregation attributes.

2. All of this information is available in the Member table.

3. However, our aggregations have filters in them (just “weak” or just “strong”). We could write these
as correlated sub-queries in the select statement, but a cleaner choice is probably to write them as
sub-queries in the FROM clause and use a join instead of a correlated sub-query.

4. We also need to order by an aggregation function.

SELECT c l u b
, f a c t i o n
, COALESCE(‘ num weak ’ , 0) AS ‘ WeakAssoca t ions ’ −− r e p l a c e s NULL

from L .O. J . w i t h 0
, COALESCE(‘ num s t rong ’ , 0) AS ‘ S t r o n g A s s o c i a t i o n s ’ −− r e p l a c e s

NULL from L .O. J . w i t h 0
FROM ‘Member ’

NATURAL LEFT OUTER JOIN (
SELECT ‘ c l u b ’ , ‘ f a c t i o n ’ , COUNT(∗) AS ‘ num weak ’
FROM ‘Member ’
WHERE ‘ f a c t i o n s t r e n g t h ’ = ‘ weak ’
GROUP BY ‘ c l u b ’ , ‘ f a c t i o n ’) AS ‘ weaks ’

NATURAL LEFT OUTER JOIN (
SELECT ‘ c l u b ’ , ‘ f a c t i o n ’ , COUNT(∗) AS ‘ num s t rong ’
FROM ‘Member ’
WHERE ‘ f a c t i o n s t r e n g t h ’ = ‘ s t r o n g ’
GROUP BY ‘ c l u b ’ , ‘ f a c t i o n ’) AS ‘ s t r o n g s ’

GROUP BY ‘ c l u b ’ , ‘ f a c t i o n ’
ORDER BY ‘ WeakAssoca t ions ’ + ‘ S t r o n g A s s o c i a t i o n s ’ ;

Page 15

Question 8
Note that these questions are becoming quite difficult. We are performing rudimentary social network
analysis in a relational database.

In the previous worksheet, we calculated triads: all the filtration was done by join predicates. We need
only group and count them here.

SELECT ‘M1’ . ‘ i d ’ , COUNT(∗) AS ‘ NumTriads ’
FROM ‘Member ’ AS ‘M1’

JOIN ‘ R e l a t i o n s h i p ’ AS ‘R1 ’ ON (‘M1’ . ‘ i d ’ = ‘R1 ’ . ‘ member1 ’ OR ‘M1
’ . ‘ i d ’ = ‘R1 ’ . ‘ member2 ’)

JOIN ‘Member ’ AS ‘R2 ’ ON (‘M2’ . ‘ i d ’ = ‘R1 ’ . ‘ member1 ’ OR ‘M2’ . ‘ i d ’
= ‘R1 ’ . ‘ member2 ’)

JOIN ‘ R e l a t i o n s h i p ’ AS ‘R2 ’ ON (‘M2’ . ‘ i d ’ = ‘R2 ’ . ‘ member1 ’)
JOIN ‘Member ’ AS ‘M3’ ON (‘M3’ . ‘ i d ’ = ‘R2 ’ . ‘ member2 ’)
JOIN ‘ R e l a t i o n s h i p ’ AS ‘R3 ’ ON (‘M3’ . ‘ i d ’ = ‘R3 ’ . ‘ member1 ’ OR ‘M3

’ . ‘ i d ’ = ‘R3 ’ . ‘ member2 ’)
WHERE ‘M1’ . ‘ i d ’ <> ‘M2’ . ‘ i d ’

AND ‘M1’ . ‘ i d ’ <> ‘M3’ . ‘ i d ’
AND ‘M2’ . ‘ i d ’ < ‘M3’ . ‘ i d ’
AND (‘M1’ . ‘ i d ’ = ‘R3 ’ . ‘ member1 ’ OR ‘M1’ . ‘ i d ’ = ‘R3 ’ . ‘ member2 ’)

GROUP BY ‘M1’ . ‘ i d ’ ;

Observe the trick of fixing the order of M2.id and M3.id to ensure that we do not return duplicate triads.

Page 16

Question 9
This question combines part (d) and part (c). The projection is onto attributes that are determined from
different sets of tuples. Also note that there are two different isomorphic paths of length two where a
vertex could be: either on the endpoint or in the middle. For the first value here, we need to take into
account both of those graph isomorphism. We will avoid outer joins on ‘NumLength2Paths’ to avoid
div-by-zero errors.

SELECT ‘ i d ’ , ‘ NumLength2Paths ’ , ‘ NumTriads ’ , ‘ NumTriads ’ / ‘
NumLength2Paths ’ AS ‘ R a t i o ’

FROM ‘Member ’
NATURAL JOIN (

SELECT ‘M1’ . ‘ i d ’ , COUNT(∗) AS ‘ NumTriads ’
FROM ‘Member ’ AS ‘M1’

JOIN ‘ R e l a t i o n s h i p ’ AS ‘R1 ’ ON (‘M1’ . ‘ i d ’ = ‘R1 ’ . ‘ member1
’ OR ‘M1’ . ‘ i d ’ = ‘R1 ’ . ‘ member2 ’)

JOIN ‘Member ’ AS ‘R2 ’ ON (‘M2’ . ‘ i d ’ = ‘R1 ’ . ‘ member1 ’ OR ‘
M2’ . ‘ i d ’ = ‘R1 ’ . ‘ member2 ’)

JOIN ‘ R e l a t i o n s h i p ’ AS ‘R2 ’ ON (‘M2’ . ‘ i d ’ = ‘R2 ’ . ‘ member1
’)

JOIN ‘Member ’ AS ‘M3’ ON (‘M3’ . ‘ i d ’ = ‘R2 ’ . ‘ member2 ’)
JOIN ‘ R e l a t i o n s h i p ’ AS ‘R3 ’ ON (‘M3’ . ‘ i d ’ = ‘R3 ’ . ‘ member1

’ OR ‘M3’ . ‘ i d ’ = ‘R3 ’ . ‘ member2 ’)
WHERE ‘M1’ . ‘ i d ’ <> ‘M2’ . ‘ i d ’

AND ‘M1’ . ‘ i d ’ <> ‘M3’ . ‘ i d ’
AND ‘M2’ . ‘ i d ’ < ‘M3’ . ‘ i d ’
AND (‘M1’ . ‘ i d ’ = ‘R3 ’ . ‘ member1 ’ OR ‘M1’ . ‘ i d ’ = ‘R3 ’ . ‘

member2 ’)
GROUP BY ‘M1’ . ‘ i d ’)

NATURAL JOIN (
SELECT ‘M1’ . ‘ i d ’ , COUNT(∗) AS ‘ NumLength2Paths ’
FROM ‘Member ’ AS ‘M1’

JOIN ‘ R e l a t i o n s h i p ’ AS ‘R1 ’ ON (‘M1’ . ‘ i d ’ = ‘R1 ’ . ‘ member1
’

OR ‘M1’ . ‘ i d ’ = ‘R1 ’ . ‘ member2
’)

JOIN ‘Member ’ AS ‘R2 ’ ON (‘M2’ . ‘ i d ’ = ‘R1 ’ . ‘ member1 ’
OR ‘M2’ . ‘ i d ’ = ‘R1 ’ . ‘ member2 ’)

JOIN ‘ R e l a t i o n s h i p ’ AS ‘R2 ’ ON (‘M2’ . ‘ i d ’ = ‘R2 ’ . ‘ member1
’

OR ‘M1’ . ‘ i d ’ = ‘R2 ’ . ‘ member1 ’
OR ‘M1’ . ‘ i d ’ = ‘R2 ’ . ‘ member2 ’

)
JOIN ‘Member ’ AS ‘M3’ ON (‘M3’ . ‘ i d ’ = ‘R2 ’ . ‘ member1 ’

OR ‘M3’ . ‘ i d ’ = ‘R2 ’ . ‘ member2 ’)
WHERE ‘M1’ . ‘ i d ’ <> ‘M2’ . ‘ i d ’

AND ‘M1’ . ‘ i d ’ <> ‘M3’ . ‘ i d ’

Page 17

AND ‘M2’ . ‘ i d ’ < ‘M3’ . ‘ i d ’
GROUP BY ‘M1’ . ‘ i d ’)

ORDER BY ‘ R a t i o ’ ;

Page 18

