CSC 370

Activity Worksheet: Functional Dependencies & Keys

Sean Chester

Fall 2022

Notes

This worksheet provides extra practice questions for determining functional dependencies, computing attribute set closures, and identifying (super)keys.

Questions

1. FD's in a Sales Database: You are provided with the (non-normalised) relation below. Identify at least four non-trivial functional dependencies. Justify each FD with a one sentence explanation. (A response is correct if the justification is both plausible and based on the formal definition of an FD.) One of the four FD's is provided as a sample.

```
Sales (
 product_id,
 product_name,
 purchase_timestamp,
 customer_id,
 customer_name,
 shipping_address,
 billing_address,
 subtotal,
 taxes,
 delivery_fee,
 total,
 has_loyalty_number,
 quantity_purchased
```

subtotal taxes delivery_free \rightarrow total

)

The total is uniquely determined by summing the subtotal, taxes, and delivery fee.

- 2. FD's in a Library Catalogue: Which of the following functional dependencies are suitable for a database that tracks the items at a library and which of those are on loan? The first question is answered as a sample solution.
 - (a) date_checked_out → due_date
 No. It is likely that different items (e.g., a book and a ukulele) have different loan periods.

(c) customer_id \rightarrow hold_on_account

yes. A single hold on the chele account of a single customer.

(d) author publication_year
$$\rightarrow$$
 title
No. author can publish multiple filles in a year

- (e) author title → publication_year No. Author can publish a book named "Bear" fuice in different years.
- (f) due_date \rightarrow is_overdue

- 3. Closures: In the following questions, you are given a set *F* of functional dependencies and an attribute set *X*. Determine the closure of *X*, X^+ .
 - (a) Find the closure of $\{A, C\}$ given the following FD's:
 - $A \to B$ $C \to D$ $D \to A$ $\{A, C\}^+ \supseteq \{A, C\} // \text{ trivially}$ $\{A, C\}^+ \supseteq \{A, B, C\} // \text{ because } \mathbf{A} \to \mathbf{B}$ $\{A, C\}^+ \supseteq \{A, B, C, D\} // \text{ because } \mathbf{C} \to \mathbf{D}$

- (b) Find the closure of $\{A\}$, given the following FD's:
 - $A \rightarrow B$ $C \rightarrow B$ $\{A3^{+} = \xi \}$ + i vial $= \xi A3 + i \text{ vial}$ $= \xi A3 + i \text{ vial}$ $= \xi A_{1}B3 \text{ Rule}$
- (c) Find the closure of $\{D\}$, given the following FD's:
- (d) Find the closure of $\{C\}$, given the following FD's:

$A \rightarrow BD$. 1
$AC \rightarrow D$	۶ دع ⁺ ۲	33	trivial
$D \rightarrow A$	e –		
	:	ንርን	trivia

- Not doing all Keys --

- 4. Keys: In the questions below, you are given a relation R, its schema, and a set F of function dependencies. Identify all the keys of R.
 - (a) Find all keys of $R_1(A, B, C, D)$ given the following functional dependencies:

- (b) Find all keys of $R_2(A, B, C, D)$ given the following set of functional dependencies:

(c) Find all keys of $R_3(A, B, C)$ given the following set of functional dependencies:

 $A \rightarrow B$

A = A,B AC = A,B,C Superkey, Key B = B ABC = ABC superky AB=AB C = C

(d) Find all keys of $R_4(A, B, C, D, E)$ given the following set of functional dependencies:

0: D ABCD = fivial B = B, C C = C ABCE = fivial E = E $A \rightarrow C$ A = A, CAB = A, B, C $B \rightarrow BC$ $CD \rightarrow E$ AC = AIC $AD = A_1 C_1 D_1 E$ AS= AICIE Superky and ABC = A,B,C Ky $nb \in = A,B,C,D,E$ NO $BD = B_1C_1O_1E$ AB AD NO Page 5

Solutions

Question 1

Quite a few solutions are possible, depending on the assumptions of uniqueness. For example:

product_id → product_name

Each product only goes by one name and the product is uniquely identified by the product_id.

$customer_id\ purchase_timestamp\ \rightarrow shipping_address\ billing_address\ has_loyalty_number$

While a customer may have multiple addresses, only one shipping and one billing address would be associated with a single transaction.

subtotal purchase_timestamp shipping_address has_loyalty_number \rightarrow delivery_fee taxes total

This store calculates the delivery fee based on the subtotal for the order, where it is shipped to, whether the customer has a loyalty program discount, and the date of the order; moreover, because the subtotal, delivery_fee, and taxes determine the total (as in the first FD), we can also state that any two tuples with the same subtotal, purchase_timestamp, shipping_address, and has_loyalty_number will also have the same taxes and total.

Question 2

Part A

$date_checked_out \rightarrow due_date$

No. It is likely that different items (e.g., a book and a ukulele) have different loan periods.

Part B

ISBN \rightarrow title author publication_year

Yes, the ISBN uniquely identifies all of this information, down to the edition and format.

Part C

$customer_id \ \rightarrow hold_on_account$

Probably yes. An example of "no" would be if this were historical transactions indicating a hold at the time.

Part D

author publication_year \rightarrow title

No. Apparently Barbara Cartland wrote 23 novels per year.

Part E

author title \rightarrow publication_year

No. It is possible to publish a second edition of a textbook, for example.

Part F

due_date \rightarrow is_overdue

Yes. While is_overdue may change depending on the current date, it should be consistent for everything with the same due_date.

Question 3

Part A

 $\{A, C\}^+ \supseteq \{A, C\} // \text{ trivially} \\ \{A, C\}^+ \supseteq \{A, B, C\} // \text{ because } \mathbf{A} \to \mathbf{B} \\ \{A, C\}^+ \supseteq \{A, B, C, D\} // \text{ because } \mathbf{C} \to \mathbf{D}$

Part B

 $\{A\}^+ \supseteq \{A\} // trivially$ $\{A\}^+ = \{A, B\} // because A \rightarrow B$

We cannot apply $C \rightarrow B$ because the antecedent, $\{C\}$, is not a subset of $\{A, B\}$. The fact that the consequent $\{B\}$ is a subset of $\{A, B\}$ doesn't mean that we can use the rule; it does, however, mean that the rule would not expand the closure, even if we could apply it.

Part C

 $\begin{array}{l} \{D\}^+ \supseteq \{D\} // \text{ trivially} \\ \{D\}^+ \supseteq \{A, D\} // \text{ because } \mathbf{D} \rightarrow \mathbf{A} \\ \{D\}^+ \supseteq \{A, B, D\} // \text{ because } \mathbf{A} \rightarrow \mathbf{BD} \text{ and } \{A, D\} \cup \{B, D\} = \{A, B, D\} \\ \{D\}^+ = \{A, B, D\} // \text{ because we cannot use the rule } \mathbf{C} \rightarrow \mathbf{BD} \text{ since } \{C\} \nsubseteq \{A, B, D\} \end{array}$

Part D

 $\{C\}^+ \supseteq \{C\} //$ trivially $\{C\}^+ = \{C\} //$ because we cannot apply AC \rightarrow D as we need both A and C, i.e., $\{A, C\} \nsubseteq \{C\}$

Question 4

Part A

We obtain the following closures:

 $\{A\}^+ \supseteq \{A\} // \text{ trivially}$ $\{A\}^+ \supseteq \{A, B\} // \text{ because } \mathbf{A} \to \mathbf{B}$ $\{A\}^+ \supseteq \{A, B, C\} // \text{ because } \mathbf{B} \to \mathbf{C}$ $\{A\}^+ \supseteq \{A, B, C, D\} // \text{ because } \mathbf{C} \to \mathbf{D} \\ \text{Therefore, } \{A\} \text{ is a superkey}$

 ${B}^+ \supseteq {B} // \text{trivially}$ ${B}^+ \supseteq {B, C} // \text{because } \mathbf{B} \to \mathbf{C}$ ${B}^+ \supseteq {B, C, D} // \text{because } \mathbf{C} \to \mathbf{D}$ At this point, we are stuck and cannot determine A. Therefore, ${B}$ is not a superkey.

 $\{C\}^+ \supseteq \{B\} //$ trivially $\{C\}^+ \supseteq \{C, D\} //$ because $C \rightarrow D$ At this point, we are stuck and cannot determine A nor B. Therefore, $\{C\}$ is not a superkey.

 $\{B, C\}^+ \supseteq \{B, C\} //$ trivially $\{B, C\}^+ \supseteq \{B, C, D\} //$ because $\mathbb{C} \to \mathbb{D}$ At this point, we are stuck and cannot determine A. Therefore, $\{B, C\}$ is not a superkey.

Any other subset of attributes is either a superset of $\{A\}$ or does not enable us to use any new FD's compared to the attribute sets that we have already tried. Therefore, we can conclude that $\{A\}$ is the only key for R_1 .

Part B

Note that always $\{\}^+ = \{\}$; so, the empty set can only be a superkey for the empty relation R(). R_2 is not empty; so, any singleton set is minimal.

 $\{A\}$ is a key given $A \rightarrow B, B \rightarrow AC$, and $C \rightarrow D$ and it is a singleton set (i.e., minimal).

 $\{B\}^+ = \{B, A, C, D\}$, given B \rightarrow AC and C \rightarrow D. It is therefore a key because it is also a singleton set (i.e., minimal).

 $\{C\}^+ = \{C, D\}$, given $C \rightarrow D$. Therefore it is not a superkey.

- $\{C, A\}^+ = \{A, B, C, D\}$, because $A \rightarrow B$. Therefore $\{C, A\}$ is a superkey. It is not a key because it is a proper superset of $\{A\}$, which is a key.
- $\{C, B\}^+ = \{A, B, C, D\}$, because B \rightarrow AC. Therefore $\{C, B\}$ is a superkey. It is not a key because it is a proper superset of $\{B\}$, which is a key.

 $\{D\}^+ = \{D\}$, because there are no FD's with $\{D\}$ as a superset of their antecedent. Therefore it is not a superkey.

- $\{D, A\}^+ = \{A, B, C, D\}$, because $A \to B$ and $B \to AC$. Therefore $\{D, A\}$ is a superkey. It is not a key because it is a proper superset of $\{A\}$, which is a key.
- $\{D, B\}^+ = \{A, B, C, D\}$, because B \rightarrow AC. Therefore $\{D, B\}$ is a superkey. It is not a key because it is a proper superset of $\{B\}$, which is a key.
- $\{D, C\}^+ = \{C, D\}$, because no FD's with an antecedent that is a subset of $\{C, D\}$ can expand the closure. Therefore $\{D, C\}$ is not a superkey.
- $\{D, C, A\}^+ = \{A, B, C, D\}$, because $A \rightarrow B$. Therefore $\{D, C, A\}$ is a superkey, but not a key because it is a proper superset of $\{A\}$.
- $\{D, C, B\}^+ = \{A, B, C, D\}$, because B \rightarrow AC. Therefore $\{D, C, B\}$ is a superkey, but not a key because it is a proper superset of $\{B\}$.

Part C

 $\{A\}^+ = \{A, B\}$, given $A \rightarrow B$. Therefore, it is not a superkey.

 $\{A, C\}^+ = \{A, B, C\}$, given A \rightarrow B. Therefore, it is a superkey. Moreover, it is minimal because neither $\{A\}, \{C\}, \text{ nor } \{\}$ is a superkey

 $\{A, B\}^+ = \{A, B\}$, since there are no FD's with $\{B\}$ as antecedent. Therefore, it is not a superkey

 $\{A, B, C\}^+ = \{A, B, C\}$, trivially. It is a superkey but also a proper superset of the key $\{A, C\}$.

We can confirm similarly that the smallest sets containing B or C that are superkeys are ones that we have already found above. Therefore, $\{A, C\}$ is the only key for R_3 .

Part D

Using a similar process to the above questions, we can confirm the following keys: $\{A, B, D\}$.