
CSC 370

Activity Worksheet:
Expressing Constraints in SQL

Mr. Yichun Zhao

Fall 2022

1



You have already completed this worksheet to convert constraints from plain English into relational
algebra. Now you should convert it into a third format by writing these relational algebra constraints in
SQL. As before, all seven constraints refer to a relational schema with the following structure:

BankSystem Schema
Member(member id, social insurance number, date joined)
Account(account id, member id, balance, credit limit)
Transactions(transaction id, send account id, recipient account id, data, amount)

Page 2



Questions
1. Non-Negative Balances

Constraint: No account can have a balance below zero.

𝜎balance<0(Account) = ∅

Solution:

2. Within Credit Limits

Constraint: No account can have negative balance that exceeds the credit limit.

𝜎balance>credit limit∗−1(Account) = ∅

Solution:

Page 3



3. CRA Agrees With Your Member Count

Constraint: No two members can have the same social insurance number.

𝜌𝐴(Member) ⊲⊳A.member id≠B.member id AND A.sin=B.sin 𝜌𝐵(Member) = ∅

Solution:

4. No Dangling Members

Constraint: Every member must have at least one account.

𝜋member id(Member) \ 𝜋member id(Account) = ∅

Solution:

Page 4



5. No Transfers Within An Account

Constraint: Every transaction has a unique sender and recipient account.

𝜎sender account id=recipient account id(Transactions) = ∅

Solution:

6. No Self-Transfers

Constraint: Every transaction is between a unique sending member id and recipient member id.

𝜌𝐴1(Account) ⊲⊳A1.mid=A2.mid 𝜌𝐴2(Account) ⊲⊳A1.aid=said AND A2.aid=raid Transactions = ∅

Solution:

Page 5



7. Junior Account Limits

Constraint: No member who joined within the past two years can have an account with a credit limit
over $5000.

𝜎date joined>′2019−09−28′(Member) ⊲⊳ 𝜎credit limit>5000(Account) = ∅

Solution:

8. Daily Limit

Constraint: Each account is limited to three outgoing transactions per day.

Note: This might sound very artificial, but that is because we have not yet learned about aggregation
functions so we cannot create constraints on the sum of the transaction in a day.

𝜎T1.tid≠T2.tid≠T3.tid≠T4.tid

(𝜌T1(Transactions) ⊲⊳T1.date=T2.date AND T1.said=T2.said

𝜌T2(Transactions) ⊲⊳T1.date=T3.date AND T1.said=T3.said

𝜌T3(Transactions) ⊲⊳T1.date=T4.date AND T1.said=T4.said

𝜌T4(Transactions)) = ∅

Solution:

Page 6



Solutions

Question 1
This constraint applies only to one attribute of a table; so, we can use an attribute check constraint:

ALTHER TABLE Account
MODIFY b a l a n c e INT CHECK( b a l a n c e >= 0 ) ;

Question 2
This constraint involves multiple attributes from the same table, so we need a tuple check constraint:

ALTHER TABLE Account
ADD CONSTRAINT c r e d i t l i m i t
CHECK( b a l a n c e >= −1 ∗ c r e d i t l i m i t ) ;

Question 3
This is a key constraint. We have already defined a primary key for this relation; so, we wish to define an
auxiliary key. Since it is only one attribute, we can simply modify that attribute to be unique:

ALTHER TABLE Member
MODIFY s o c i a l i n s u r a n c e n u m b e r CHAR( 9 ) UNIQUE ;

Question 4
This is a referential integrity constraint. We can enforce it with a foreign key (with default reject or with
cascade policy).

ALTHER TABLE Member
ADD CONSTRAINT f k m em be r a cc ou n t ( member id )
REFERENCES Account ( member id ) ;

Question 5
This constraint references two attributes from the same table. Thus, we can represent it with a tuple check
constraint.

ALTHER TABLE T r a n s a c t i o n s
ADD CONSTRAINT u n i q u e s e n d r e c i p i e n t
CHECK( s e n d e r a c c o u n t i d <> r e c i p i e n t a c c o u n t i d ;

Page 7



Question 6
This is a complicated constraint that involves multiple tables. We cannot represent this any better than
with a whole-database assertion.

CREATE ASSERTION n o s e l f t r a n s f e r s
CHECK(NOT EXISTS (

SELECT ∗
FROM T r a n s a c t i o n s

JOIN Account AS A1
ON ( A1 . a c c o u n t i d = s e n d a c c o u n t i d )

JOIN Account AS A2
ON ( A2 . a c c o u n t i d = r e c i p i e n t a c c o u n t i d

AND A1 . member id = A2 . member id ) ) ) ;

Question 7
Again, we need multiple tables to describe this constraint: we will need to use an assertion again.

CREATE ASSERTION j u n i o r c r e d i t l i m i t
CHECK( NOT EXISTS (

SELECT ∗
FROM Account

NATURAL JOIN Member
WHERE c r e d i t l i m i t > 5000

AND d a t e j o i n e d > DATE SUB(CURDATE( ) , INTERVAL 2 YEAR ) ) ) ;

Question 8
This constraint only applies to one table, but it cannot be applied to a single tuple. Thus, we still need an
assertion rather than a tuple constraint.

CREATE ASSERTION t r a n s a c t i o n l i m i t o f 3
CHECK(NOT EXISTS (

SELECT NULL
FROM Transact ion
GROUP BY s e n d a c c o u n t i d
HAVING COUNT( ∗ ) > 3 ) ) ;

Page 8


