
CSC 370

Activity Worksheet:
Accelerating SQL Queries

Mr. Yichun Zhao

Fall 2022

1

In the previous chapter’s worksheets, we determined the answer to several SQL queries defined over
Zachary’s karate club. The dataset and queries are repeated here for reference.

For each query, you should specify one CREATE INDEX statement that is likely to accelerate the query
and explain why you chose that index. The first question is answered already as an example.

Schema
Member(id, name, faction, faction strength, post split club)
Club(id, label)
Faction(id, label)
Relationship(member1, member2, num contexts)

id label
1 Mr. Hi
2 John

Table 1: Faction

id label
1 Mr. Hi’s
2 Officers’

Table 2: Club

Page 2

id name faction fs psc id name faction fs psc
1 Alice 1 strong 1 18 Werner 1 weak 1
2 Bob 1 strong 1 19 Xi NULL NULL 2
3 Carol 1 strong 1 20 Yuri 1 weak 1
4 Dave 1 strong 1 21 Zane 2 strong 2
5 Eve 1 strong 1 22 Antonio 1 weak 1
6 Farisha 1 strong 1 23 Babak 2 strong 2
7 Gregoire 1 strong 1 24 Claire 2 weak 2
8 Hamza 1 strong 1 25 Dierdre 2 weak 2
9 Ninad 2 weak 1 26 Einar 2 strong 2
10 Omar NULL NULL 2 27 Farouk 2 strong 2
11 Panagiotis 1 strong 1 28 Ghada 2 strong 2
12 Quinn 1 strong 1 29 Hiro 2 strong 2
13 Ravi 1 weak 1 30 Iniko 2 strong 2
14 Saalima 1 weak 1 31 Javier 2 strong 2
15 Tarik 2 strong 2 32 Kumar 2 strong 2
16 Ulysses 2 weak 2 33 Ludmila 2 strong 2
17 Vivienne NULL NULL 1 34 Manpreet 2 strong 2

Table 3: Member

m1 m2 nc m1 m2 nc m1 m2 nc m1 m2 nc
1 2 4 1 3 5 1 4 3 1 5 3
1 6 3 1 7 3 1 8 2 1 9 2
1 11 2 1 12 3 1 13 2 1 14 3
1 18 2 1 20 2 1 22 2 1 32 2
2 3 6 2 4 3 2 8 4 2 14 5
2 18 1 2 20 2 2 22 2 2 31 2
3 4 3 3 8 4 3 9 5 3 10 1
3 14 3 3 28 2 3 29 2 3 33 3
4 8 3 4 13 3 4 14 3 5 7 2
5 11 3 6 7 5 6 11 3 6 17 3
7 17 3 9 31 3 9 33 4 9 34 3
10 34 2 14 34 3 15 33 3 15 34 2
16 33 3 16 34 4 19 33 1 19 34 2
20 34 1 21 33 3 21 34 1 23 33 2
24 26 5 24 28 4 24 30 2 24 33 5
24 34 4 25 26 2 25 28 3 25 32 2
26 32 7 27 30 4 27 34 2 28 34 4
29 32 2 29 34 2 30 33 3 30 34 2
31 33 3 31 34 3 32 33 4 32 34 4
33 34 5

Table 4: Relationship

Page 3

Questions
1. Interpreting SQL Queries

SELECT ‘ name ‘
FROM ‘Member ‘

JOIN ‘ F a c t i o n ‘ ON (‘ f a c t i o n ‘ = ‘ F a c t i o n ‘ . ‘ id ‘)
WHERE ‘ f a c t i o n s t r e n g t h ‘ = ’ weak ’

AND ‘ l a b e l ‘ = ’Mr . Hi ’ ;

Solution:

Page 4

2. Interpreting SQL Queries

SELECT ‘M2‘ . ‘ name ‘
FROM ‘Member ‘ AS ‘M1‘

, ‘Member ‘ AS ‘M2‘
WHERE ‘M1‘ . ‘ name ‘ = ’ E i n a r ’

AND ‘M1‘ . ‘ f a c t i o n ‘ = ‘M2‘ . ‘ f a c t i o n ‘ ;

Solution:

Page 5

3. Interpreting SQL Queries

SELECT ‘M1‘ . ‘ name ‘ , ‘M2‘ . ‘ name ‘
FROM ‘Member ‘ AS ‘M1‘

JOIN ‘Member ‘ AS ‘M2‘
ON (‘M1‘ . ‘ f a c t i o n ‘ = ‘M2‘ . ‘ f a c t i o n ‘)

WHERE ‘M1‘ . ‘ p o s t s p l i t c l u b ‘ <> ‘M2‘ . ‘ p o s t s p l i t c l u b ‘ ;

Solution:

Page 6

4. Interpreting SQL Queries

SELECT ‘M1‘ . ‘ name ‘ , ‘M2‘ . ‘ name ‘
FROM ‘Member ‘ AS ‘M1‘

JOIN ‘ R e l a t i o n s h i p ‘
ON (‘M1‘ . ‘ id ‘ = ‘ member1 ‘)

JOIN ‘Member ‘ AS ‘M2‘
ON (‘M2‘ . ‘ id ‘ = ‘ member2 ‘)

WHERE ‘ num con tex t s ‘ > 5 ;

Solution:

Page 7

5. Interpreting SQL Queries

SELECT ‘M2‘ . ‘ name ‘
FROM ‘Member ‘ AS ‘M1‘

JOIN ‘ R e l a t i o n s h i p ‘
ON (‘M1‘ . ‘ id ‘ = ‘ member1 ‘)

JOIN ‘Member ‘ AS ‘M2‘
ON (‘M2‘ . ‘ id ‘ = ‘ member2 ‘)

WHERE ‘M1‘ . ‘ name ‘ LIKE ’ f%’ ;

Solution:

Page 8

6. Interpreting SQL Queries

SELECT ‘ name ‘
FROM ‘Member ‘
WHERE ‘ f a c t i o n ‘ = (

SELECT ‘ id ‘
FROM ‘ F a c t i o n ‘
WHERE ‘ l a b e l ‘ = ’Mr . Hi ’)

AND ‘ f a c t i o n s t r e n g t h ‘ = ’ weak ’ ;

Solution:

Page 9

7. Interpreting SQL Queries

SELECT ‘ name ‘
FROM ‘Member ‘
WHERE ‘ f a c t i o n ‘ = (

SELECT ‘ id ‘
FROM ‘ F a c t i o n ‘
WHERE ‘ l a b e l ‘ <> ’ Ravi ’)

AND ‘ f a c t i o n s t r e n g t h ‘ = ’ weak ’ ;

Solution:

Page 10

8. Interpreting SQL Queries

SELECT ‘ name ‘
FROM ‘Member ‘ AS ‘M1‘
WHERE EXISTS (

SELECT ∗
FROM ‘ R e l a t i o n s h i p ‘

JOIN ‘Member ‘ AS ‘M2‘
ON (‘ id ‘ = ‘ member1 ‘)

WHERE ‘M1‘ . ‘ id ‘ = ‘ member2 ‘
AND ‘ name ‘ = ’ J a v i e r ’) ;

Solution:

Page 11

9. Interpreting SQL Queries

SELECT ‘ name ‘
FROM ‘Member ‘ AS ‘M1‘
WHERE NOT EXISTS (

SELECT ∗
FROM ‘ R e l a t i o n s h i p ‘

JOIN ‘Member ‘ AS ‘M2‘
ON (‘ id ‘ = ‘ member1 ‘)

WHERE ‘M1‘ . ‘ id ‘ = ‘ member2 ‘
AND ‘ name ‘ = ’ J a v i e r ’) ;

Solution:

Page 12

10. Interpreting SQL Queries

SELECT ‘ l a b e l ‘ AS ‘ c lub ‘ , COUNT(∗)
FROM ‘Member ‘

JOIN ‘ Club ‘
ON (‘ p o s t s p l i t c l u b ‘ = ‘ Club ‘ . ‘ id ‘)

GROUP BY ‘ l a b e l ‘ ;

Solution:

Page 13

11. Interpreting SQL Queries

SELECT ‘ Club ‘ . ‘ l a b e l ‘ AS ‘ c lub ‘ , COUNT(∗)
FROM ‘Member ‘

JOIN ‘ Club ‘
ON (‘ p o s t s p l i t c l u b ‘ = ‘ Club ‘ . ‘ id ‘)

Join ‘ F a c t i o n ‘
ON (‘ f a c t i o n ‘ = ‘ F a c t i o n ‘ . ‘ id ‘)

WHERE (‘ Club ‘ . ‘ l a b e l ‘ LIKE ’%Hi%’ AND ‘ F a c t i o n ‘ . ‘ l a b e l ‘ NOT LIKE ’
%Hi%’)
OR (‘ Club ‘ . ‘ l a b e l ‘ NOT LIKE ’%Hi%’ AND ‘ F a c t i o n ‘ . ‘ l a b e l ‘ LIKE ’

%Hi%’)
GROUP BY ‘ Club ‘ . ‘ l a b e l ‘ ;

Solution:

Page 14

12. Interpreting SQL Queries

SELECT ‘M1‘ . ‘ id ‘ , ‘M1‘ . ‘ name ‘ , ‘ l a b e l ‘ AS ‘ f a c t i o n ‘ , COUNT(∗)
FROM ‘Member ‘ AS ‘M1‘

JOIN ‘ R e l a t i o n s h i p ‘
ON (‘M1‘ . ‘ id ‘ = ‘ member1 ‘)

JOIN ‘Member ‘ AS ‘M2‘
ON (‘M2‘ . ‘ id ‘ = ‘ member2 ‘)

JOIN ‘ F a c t i o n ‘
ON (‘M1‘ . ‘ f a c t i o n ‘ = ‘ F a c t i o n ‘ . ‘ id ‘)

WHERE ‘M1‘ . ‘ f a c t i o n ‘ <> ‘M2‘ . ‘ f a c t i o n ‘
GROUP BY ‘M1‘ . ‘ id ‘
HAVING COUNT(∗) > 1
ORDER BY COUNT(∗) DESC ;

Solution:

Page 15

13. Interpreting SQL Queries

SELECT ‘ name ‘ , ‘ l a b e l ‘ AS ‘ f a c t i o n ‘ , COUNT(∗)
FROM ‘Member ‘ AS ‘M1‘

JOIN (
SELECT ‘ member1 ‘ AS ‘u ‘ , ‘ member2 ‘ AS ‘v ‘
FROM ‘ R e l a t i o n s h i p ‘

UNION ALL
SELECT ‘ member2 ‘ AS ‘u ‘ , ‘ member1 ‘ AS ‘v ‘
FROM ‘ R e l a t i o n s h i p ‘)

ON (‘ u ‘ = ‘ id ‘)
JOIN ‘ F a c t i o n ‘
ON (‘ f a c t i o n ‘ = ‘ F a c t i o n ‘ . ‘ id ‘)

GROUP BY ‘ name ‘
HAVING COUNT(∗) >= 5 ;

Solution:

Page 16

Solutions

Question 1
This query requires no ordering or grouping and has three selection predicates: the join predicate, a
selection on ‘faction strength‘ and a selection on ‘Faction‘.‘label‘. In this case, ‘faction strength‘ =
’weak’ is a highly selective predicate, so the most effective index is likely to be:

CREATE INDEX ‘ i d x f a c t i o n s t r e n g t h i d n a m e ‘
ON ‘Member ‘ (‘ f a c t i o n s t r e n g t h ‘ , ‘ id ‘ , ‘ name ‘) ;

This index contains all the attributes from that table used in the query, ordered by how selective they are
and/or how soon they will be used. However, it is highly specialised for this specific query and not useful
for any query that does not involve ‘faction strength‘. A more general choice that might also help a lot
would be:

ALTER TABLE ‘Member ‘
ADD FOREIGN KEY ‘ f k m e m b e r f a c t i o n ‘ ON ‘ f a c t i o n ‘ REFERENCES ‘

F a c t i o n ‘ (‘ id ‘) ;

This foreign key index will accelerate any joins between these tables, though it is not as effective on this
specific query as filtering on the highly selective predicate ‘faction strength‘ = ’weak’.

Page 17

Question 2
Here, we have two selection predicates: one on name and one on faction. However, it isn’t easy to choose
which one to index. If we index on ‘name‘, that helps us with the very selective predicate, ‘name‘ =
’Einar’ that only returns one tuple; however, it doesn’t help at all to find the tuples in M2 that have the
same faction as M1. On the other hand, if we index first on faction and then on name, we can perform the
join efficiently, but we don’t have the ability to use the index if we filter by name first.

Comparing the two, an index on name only needs to be probed once, together with a full scan to find
the matching tuples by faction. An index on faction needs to be probed n times from a scan of Member.
Thus, the index on name appears to be better.

CREATE INDEX ‘ idx member name ‘ ON ‘Member ‘ (‘ name ‘) ;

Page 18

Question 3
In this query, we have our predicates are on factions matching and post split clubs not matching. An
index rarely helps for a not-equals operator; so, this one is actually quite easy. We would index on faction
(and possibly include post split club then name for an additional minor gain at query time but increase in
maintenance overhead). In MySQL, every foreign key is indexed.

ALTER TABLE ‘Member ‘
ADD CONSTRAINT ‘ f k m e m b e r f a c t i o n ‘

FOREIGN KEY ‘ f a c t i o n ‘ REFERENCES ‘ F a c t i o n ‘ (‘ id ‘) ;

We could explicitly create the index instead, but we will likely want the foreign key on this table, anyway.

Page 19

Question 4
Here we have a couple selection predicates: one that the id in member must match member1 or member2
in Relationship, and the other that the num contexts attribute must be greater than 5. The latter constraint
reduces the Relationships table to just 2 tuples instead of 77. Also, ‘id‘ is already indexed in Member
because it is a primary key. Thus, the algorithm to answer this query could use an index to find the two
relationships with sufficiently many num contexts using an index that we create and then either do a single
scan of the smaller table, Member, or use its primary key index to retrieve the matching names. This will
be much more efficient than prioritising the join.

CREATE INDEX ‘ i d x r e l a t i o n s h i p n u m c o n t e x t s ‘ ON ‘ R e l a t i o n s h i p ‘ (‘
num con tex t s ‘) ;

Page 20

Question 5
Here we have two predicates again, an equality on the foreign key for the join and a string pattern
matching predicate. While it is possible to use indexes effectively with strings, they do not facilitate
pattern matching. Moreover, because there is already a primary key index on Member.id, it is difficult to
accelerate this query (without using substantially more knowledge that we will gain in the next module of
the course). We can already scan Relationship and probe each Member.

Therefore, we are not likely to improve this query with an index. (If we really need to accelerate it, our
best choice is a materialised view on the name field).

Page 21

Question 6
With sub-queries, it becomes much more complex. Here, we could prioritise the sub-query with an index
on Faction label or the outer query with an index on faction strength or faction strength and faction. It is
usually more impact to index the larger relation.

CREATE INDEX ‘ i d x m e m b e r f a c t i o n s t r e n g t h ‘ ON ‘Member ‘ (‘
f a c t i o n s t r e n g t h ‘ , ‘ f a c t i o n ‘ , ‘ name ‘) ;

Page 22

Question 7
In this query, there isn’t much hope for accelerating the inner query, because it is based on a not equals
operator. We use the same solution as the previous question.

CREATE INDEX ‘ i d x m e m b e r f a c t i o n s t r e n g t h ‘ ON ‘Member ‘ (‘
f a c t i o n s t r e n g t h ‘ , ‘ f a c t i o n ‘ , ‘ name ‘) ;

Page 23

Question 8
With a correlated sub-query, almost without exception, you want to index the correlated attribute, since
that is the bottleneck of the query. Here, we clearly index ‘member2‘ as that is what we probe with the
attribute from the outer query (M1.id). This one would benefit from including name in the index as well,
since it is the only other attribute used.

CREATE INDEX ‘ i d x r e l a t i o n s h i p m e m b e r 2 n a m e ‘ ON ‘ R e l a t i o n s h i p ‘ (‘
member2 ‘ , ‘ name ‘) ;

Page 24

Question 9
Although the condition is negated here, we did not optimise the previous query. So, the solution is the
same.

CREATE INDEX ‘ i d x r e l a t i o n s h i p m e m b e r 2 n a m e ‘ ON ‘ R e l a t i o n s h i p ‘ (‘
member2 ‘ , ‘ name ‘) ;

Page 25

Question 10
We gain more by indexing the larger table, which is Member in this case. (This isn’t always true, e.g.,
when one entire table fits in memory, as we’ll discuss in the next module.)

CREATE INDEX ‘ idx member c lub ‘ ON ‘Member ‘ (‘ p o s t s p l i t c l u b ‘) ;

Page 26

Question 11
We can throw out the string pattern matching as an option. Then we are left again only with the group by
key or the join keys. As in the previous example, we benefit most from indexing the largest table, which
is again Member.

CREATE INDEX ‘ idx member c lub ‘ ON ‘Member ‘ (‘ p o s t s p l i t c l u b ‘) ;

Page 27

Question 12
Often it is best to index by a sort key, because an index provides sorted access, but here the sort key is
a computed value so we cannot apply this rule of thumb. Indexing by the group by key can also help,
especially when filtering by the group size, because all the tuples within the group are clustered together.
That doesn’t help here, though, because the group by key is a primary key and thus already indexed.
Finally, for the join, we can already scan Relationship and probe the primary key index of Member for
both FK fields, member1 and member2.

Therefore, we are not likely to see an improvement to this query by adding a new index.

Page 28

Question 13
This one is awful for accelerating (assuming no optimisation by the query compiler), because any index in
the subquery is not available as part of the intermediate result; moreover, the second SELECT scrambles
any sorted access that the index might have provided. We are left trying to accelerate the outer query.
Here, we already have a primary key index on Member.id that could be probed in the join and the Faction
table is tiny.

The only plausible option here would be to use the group by key, but unfortunately the highly selective
COUNT(*) cannot be determined without knowing the result a priory of the sub-query.

Thus, this query, too, is unlikely to benefit from the creation of a new index.

Page 29

