
CSC 370

Activity Worksheet:
Third Normal Form

Dr. Sean Chester

Fall 2022

Notes
This worksheet should provide extra practice questions for decomposing a relation into 3NF using the

Synthesis Algorithm. In each question you are given a relation and a set of functional dependencies; you
should show your work to decompose the relation into a set of relations that are all in 3NF. The first

question is answered as a model solution

1



Questions
1. R(A, B, C, D)

AB → CD
C → D
D → B

Solution:

There is some lack of clarity as to whether we should first check if a relation is in 3NF before
decomposing it. This step is not in the algorithm in the textbook. The argument against doing so is
that it involves computing a combinatorial number of closures to find out which attributes are prime.
However, on an example where there are only four attributes, the power set really isn’t that large and it
is worth checking whether the decomposition is actually necessary. It doesn’t matter whether we do
this before or after calculating a minimal basis, because the set of closures will be equivalent anyway.

First, we check if it is already in 3NF by evaluating each FD independently to see if any of them are
3NF violations. For this, it will help to identify any keys. We can do this by exhaustively searching
the power set of the attribute set. This will yield the following keys:

{𝐴𝐵}
{𝐴𝐶}
{𝐴𝐷}

So, then we check each FD:

AB → CD

{𝐴𝐵} ⊆ {𝐴𝐵} // i.e., the key {𝐴𝐵} is a subset of the left-hand side of this FD. Thus the FD is in
BCNF and 3NF

D → B

{𝐴𝐵} ⊇ {𝐵} // i.e., the key {𝐴𝐵} is a superset of the right-hand side of this FD. Thus the FD is in
3NF.

C → D

{𝐴𝐷} ⊇ {𝐷} // i.e., the key {𝐴𝐷} is a superset of the right-hand side of this FD. Thus the FD is in
3NF.

∴ R is already in 3NF and a decomposition should not be done.

(But for practice, let’s do it anyway):

First, we need a minimal basis. To determine that, we first apply the splitting rule to every FD to
which it applies:

AB → C

Page 2



AB → D
C → D
D → B

Next, we check if any FD’s follow from the others. We can do this by removing each FD and checking
if the right-hand side is still part of the closure of the left-hand-side.

After removing AB → C
{𝐴, 𝐵}+ ⊇ {𝐴, 𝐵} // trivially
{𝐴, 𝐵}+ ⊇ {𝐴, 𝐵, 𝐷} // from AB → D
{𝐴, 𝐵}+ = {𝐴, 𝐵, 𝐷} // because we cannot productively apply any more FD’s.
∴ AB → C is not redundant, because AB does not determine C from the remaining FD’s

After removing AB → D
{𝐴, 𝐵}+ ⊇ {𝐴, 𝐵} // trivially
{𝐴, 𝐵}+ ⊇ {𝐴, 𝐵, 𝐶} // from AB → C
{𝐴, 𝐵}+ ⊇ {𝐴, 𝐵, 𝐶, 𝐷} // from C → D
{𝐴, 𝐵}+ = {𝐴, 𝐵, 𝐶, 𝐷} // because we have already established that {𝐴𝐵} is a key.
∴ AB → D is redundant, because AB determines D from the remaining FD’s

After removing C → D
{𝐶}+ ⊇ {𝐶} // trivially
{𝐶}+ = {𝐶} // because there are no FD’s with a subset of {𝐶} on the left-hand side
∴ C → D is not redundant, because C cannot determine D from the remaining FD’s

After removing D → B
{𝐷}+ ⊇ {𝐷} // trivially
{𝐷}+ = {𝐷} // because there are no FD’s with a subset of {𝐷} on the left-hand side
∴ D → B is not redundant, because D cannot determine B from the remaining FD’s

At this point, our minimal basis is:
AB → C
C → D
D → B

As a final condition, we check whether it is possible to remove any attributes from the left-hand side
of the first FD:

Changing AB → C to A → C
Observe that now {𝐴}+ = {𝐴, 𝐵, 𝐶, 𝐷}, but it used to be {𝐴}. Thus, this is not a basis.

Changing AB → C to B → C
Observe that now {𝐵}+ = {𝐵,𝐶, 𝐷}, but it used to be {𝐵}. Thus, this is not a basis.

In summary, a minimal basis for R is:
AB → C
C → D
D → B

Page 3



As a second step, we create one projection for each FD:

S(A ,B, C)
T(C, D)
U(B, D)

(Observe that none of these are subsets of each other so none are redundant and we should keep all
of them.)

Finally, we confirm whether any of the projections involve a superkey for R. Checking each relation
in turn:
{𝐴, 𝐵, 𝐶}+ ⊇ {𝐴, 𝐵, 𝐶} // trivially
{𝐴, 𝐵, 𝐶}+ ⊇ {𝐴, 𝐵, 𝐶, 𝐷} // from C → D
{𝐴, 𝐵, 𝐶}+ = {𝐴, 𝐵, 𝐶, 𝐷} // because we have already established that {𝐴, 𝐵, 𝐶} is a superkey.

∴ we already have a superkey among our projections and the decomposition is complete.

Summary:
S(A, B, C)
T(C, D)
U(B, D)

Page 4



2. MovieScreening(title, genre, theatre, city)

title → genre
title city → theatre genre
theatre → city

Solution:

Page 5



3. R(A, B, C, D, E)

AB → CD
CD → AB

Solution:

Page 6



4. Provide a set of functional dependencies for a relation R(A, B, C, D, E, F) such that either:

R is in BCNF but not 3NF;
or R is in 3NF but not BCNF

Solution:

Page 7



Solutions

Question 1
There is some lack of clarity as to whether we should first check if a relation is in 3NF before decomposing
it. This step is not in the algorithm in the textbook. The argument against doing so is that it involves
computing a combinatorial number of closures to find out which attributes are prime. However, on an
example where there are only four attributes, the power set really isn’t that large and it is worth checking
whether the decomposition is actually necessary. It doesn’t matter whether we do this before or after
calculating a minimal basis, because the set of closures will be equivalent anyway.

First, we check if it is already in 3NF by evaluating each FD independently to see if any of them are 3NF
violations. For this, it will help to identify any keys. We can do this by exhaustively searching the power
set of the attribute set. This will yield the following keys:

{𝐴𝐵}
{𝐴𝐶}
{𝐴𝐷}

So, then we check each FD:

AB → CD

{𝐴𝐵} ⊆ {𝐴𝐵} // i.e., the key {𝐴𝐵} is a subset of the left-hand side of this FD. Thus the FD is in BCNF
and 3NF

D → B

{𝐴𝐵} ⊇ {𝐵} // i.e., the key {𝐴𝐵} is a superset of the right-hand side of this FD. Thus the FD is in 3NF.

C → D

{𝐴𝐷} ⊇ {𝐷} // i.e., the key {𝐴𝐷} is a superset of the right-hand side of this FD. Thus the FD is in 3NF.

∴ R is already in 3NF and a decomposition should not be done.

(But for practice, let’s do it anyway):

First, we need a minimal basis. To determine that, we first apply the splitting rule to every FD to which it
applies:

AB → C
AB → D
C → D
D → B

Next, we check if any FD’s follow from the others. We can do this by removing each FD and checking if
the right-hand side is still part of the closure of the left-hand-side.

After removing AB → C

Page 8



{𝐴, 𝐵}+ ⊇ {𝐴, 𝐵} // trivially
{𝐴, 𝐵}+ ⊇ {𝐴, 𝐵, 𝐷} // from AB → D
{𝐴, 𝐵}+ = {𝐴, 𝐵, 𝐷} // because we cannot productively apply any more FD’s.
∴ AB → C is not redundant, because AB does not determine C from the remaining FD’s

After removing AB → D
{𝐴, 𝐵}+ ⊇ {𝐴, 𝐵} // trivially
{𝐴, 𝐵}+ ⊇ {𝐴, 𝐵, 𝐶} // from AB → C
{𝐴, 𝐵}+ ⊇ {𝐴, 𝐵, 𝐶, 𝐷} // from C → D
{𝐴, 𝐵}+ = {𝐴, 𝐵, 𝐶, 𝐷} // because we have already established that {𝐴𝐵} is a key.
∴ AB → D is redundant, because AB determines D from the remaining FD’s

After removing C → D
{𝐶}+ ⊇ {𝐶} // trivially
{𝐶}+ = {𝐶} // because there are no FD’s with a subset of {𝐶} on the left-hand side
∴ C → D is not redundant, because C cannot determine D from the remaining FD’s

After removing D → B
{𝐷}+ ⊇ {𝐷} // trivially
{𝐷}+ = {𝐷} // because there are no FD’s with a subset of {𝐷} on the left-hand side
∴ D → B is not redundant, because D cannot determine B from the remaining FD’s

At this point, our minimal basis is:
AB → C
C → D
D → B

As a final condition, we check whether it is possible to remove any attributes from the left-hand side of
the first FD:

Changing AB → C to A → C
Observe that now {𝐴}+ = {𝐴, 𝐵, 𝐶, 𝐷}, but it used to be {𝐴}. Thus, this is not a basis.

Changing AB → C to B → C
Observe that now {𝐵}+ = {𝐵,𝐶, 𝐷}, but it used to be {𝐵}. Thus, this is not a basis.

In summary, a minimal basis for R is:
AB → C
C → D
D → B

As a second step, we create one projection for each FD:

S(A ,B, C)
T(C, D)
U(B, D)

(Observe that none of these are subsets of each other so none are redundant and we should keep all of
them.)

Page 9



Finally, we confirm whether any of the projections involve a superkey for R. Checking each relation in
turn:
{𝐴, 𝐵, 𝐶}+ ⊇ {𝐴, 𝐵, 𝐶} // trivially
{𝐴, 𝐵, 𝐶}+ ⊇ {𝐴, 𝐵, 𝐶, 𝐷} // from C → D
{𝐴, 𝐵, 𝐶}+ = {𝐴, 𝐵, 𝐶, 𝐷} // because we have already established that {𝐴, 𝐵, 𝐶} is a superkey.

∴ we already have a superkey among our projections and the decomposition is complete.

Summary:
S(A, B, C)
T(C, D)
U(B, D)

Page 10



Question 2
First, let us calculate all the keys so that we can ascertain which attributes are prime and establish whether
this relation is already in 3NF. An exhaustive search will reveal the following keys:

{𝑡𝑖𝑡𝑙𝑒, 𝑐𝑖𝑡𝑦}
{𝑡𝑖𝑡𝑙𝑒, 𝑡ℎ𝑒𝑎𝑡𝑟𝑒}

We can thus see that we will have a 3NF violation on the first FD, since neither is {𝑡𝑖𝑡𝑙𝑒} a superkey nor
is genre prime. We thus proceed with the decomposition.

To start, we need to find a minimal basis. We use the splitting rule to arrive at: title → genre
title city → theatre
title city → genre
theatre → city

Immediately, we can see that title city → genre is redundant, because we already have title → genre. Thus
we end up with the minimal basis:
title → genre
title city → theatre
theatre → city

Next, we confirm that there are no 3NF violations in the minimal basis.

As a second step, we create one projection for each FD:
S(title, genre)
T(title, city, theatre)
U(theatre, city)

Observe that the attributes of U are a subset of those of T; thus, U is redundant and we can strike it out.

Finally, we check if we have a superkey with respect to MovieScreening among our projections:
{𝑡𝑖𝑡𝑙𝑒, 𝑔𝑒𝑛𝑟𝑒}+ ⊇ {𝑡𝑖𝑡𝑙𝑒, 𝑔𝑒𝑛𝑟𝑒} // trivially
{𝑡𝑖𝑡𝑙𝑒, 𝑔𝑒𝑛𝑟𝑒}+ = {𝑡𝑖𝑡𝑙𝑒, 𝑔𝑒𝑛𝑟𝑒} // because the only FD with a left-hand side that is a subset of
{𝑡𝑖𝑡𝑙𝑒, 𝑔𝑒𝑛𝑟𝑒} does not expand the closure

Since T is not a projection onto a superkey of MovieScreening, we try U:
{𝑡𝑖𝑡𝑙𝑒, 𝑐𝑖𝑡𝑦, 𝑡ℎ𝑒𝑎𝑡𝑟𝑒}+ ⊇ {𝑡𝑖𝑡𝑙𝑒, 𝑐𝑖𝑡𝑦, 𝑡ℎ𝑒𝑎𝑡𝑟𝑒} // trivially
{𝑡𝑖𝑡𝑙𝑒, 𝑐𝑖𝑡𝑦, 𝑡ℎ𝑒𝑎𝑡𝑟𝑒}+ ⊇ {𝑡𝑖𝑡𝑙𝑒, 𝑐𝑖𝑡𝑦, 𝑡ℎ𝑒𝑎𝑡𝑟𝑒, 𝑔𝑒𝑛𝑟𝑒} // because title → genre
{𝑡𝑖𝑡𝑙𝑒, 𝑐𝑖𝑡𝑦, 𝑡ℎ𝑒𝑎𝑡𝑟𝑒}+ = {𝑡𝑖𝑡𝑙𝑒, 𝑐𝑖𝑡𝑦, 𝑡ℎ𝑒𝑎𝑡𝑟𝑒, 𝑔𝑒𝑛𝑟𝑒} // because we have confirmed that we have found a
superkey

Thus, U is a projection of MovieScreening onto a superkey and we are finished.

Summary (semantically renaming the projections):

Movie(title, genre)
Screening(title, city, theatre)

Page 11



Question 3
First, let us determine all the keys by exhaustive search so we can establish whether this relation is already
in 3NF. This reveals the following keys:

{𝐴, 𝐵, 𝐸}
{𝐶, 𝐷, 𝐸}

We see that neither {𝐴, 𝐵} nor {𝐶, 𝐷}, the left-hand sides of the FD’s, are superkeys so this is not in
BCNF; however, A, B, C, and D are all prime. Therefore neither FD is a 3NF violation and this relation
is already in 3NF and we need not decompose it. Nonetheless, we will anyway just for extra practice with
the decomposition algorithm and to see an example that includes non-determinism.

To start, we construct a minimal basis by splitting every FD:
AB → C
AB → D
CD → A
CD → B

Next, we form our projections from each FD:
S(A, B, C)
T(A, B, D)
U(A, C, D)
V(B, C, D)

Finally, we confirm if any of the projections are onto a superkey of R.
{𝐴, 𝐵, 𝐶}+ ⊇ {𝐴, 𝐵, 𝐶} // trivially
{𝐴, 𝐵, 𝐶}+ ⊇ {𝐴, 𝐵, 𝐶, 𝐷} // because AB → D
{𝐴, 𝐵, 𝐶}+ = {𝐴, 𝐵, 𝐶, 𝐷} // because there are no more FD’s that we can apply to expand the closure

{𝐴, 𝐵, 𝐷}+ ⊇ {𝐴, 𝐵, 𝐷} // trivially
{𝐴, 𝐵, 𝐷}+ ⊇ {𝐴, 𝐵, 𝐶, 𝐷} // because AB → C
{𝐴, 𝐵, 𝐷}+ = {𝐴, 𝐵, 𝐶, 𝐷} // because there are no more FD’s that we can apply to expand the closure

{𝐴,𝐶, 𝐷}+ ⊇ {𝐴,𝐶, 𝐷} // trivially
{𝐴,𝐶, 𝐷}+ ⊇ {𝐴, 𝐵, 𝐶, 𝐷} // because CD → B
{𝐴,𝐶, 𝐷}+ = {𝐴, 𝐵, 𝐶, 𝐷} // because there are no more FD’s that we can apply to expand the closure

{𝐵,𝐶, 𝐷}+ ⊇ {𝐵,𝐶, 𝐷} // trivially
{𝐵,𝐶, 𝐷}+ ⊇ {𝐴, 𝐵, 𝐶, 𝐷} // because CD → A
{𝐵,𝐶, 𝐷}+ = {𝐴, 𝐵, 𝐶, 𝐷} // because there are no more FD’s that we can apply to expand the closure

Thus, we do not have a superkey and need to add another relation that is a key.

To find a key for R, we can search exhaustively through the powerset of its attribute set:
{𝐴}+ = {𝐴} // not a key
{𝐵}+ = {𝐵} // not a key
{𝐶}+ = {𝐶} // not a key
{𝐷}+ = {𝐷} // not a key

Page 12



{𝐸}+ = {𝐸} // not a key
{𝐴, 𝐵}+ = {𝐴, 𝐵, 𝐶, 𝐷} // not a key
{𝐴,𝐶}+ = {𝐴,𝐶} // not a key
{𝐴, 𝐷}+ = {𝐴, 𝐷} // not a key
{𝐴, 𝐸}+ = {𝐴, 𝐸} // not a key
{𝐵,𝐶}+ = {𝐵,𝐶} // not a key
{𝐵, 𝐷}+ = {𝐵, 𝐷} // not a key
{𝐵, 𝐸}+ = {𝐵, 𝐸} // not a key
{𝐶, 𝐷}+ = {𝐴, 𝐵, 𝐶, 𝐷} // not a key
{𝐶, 𝐸}+ = {𝐶, 𝐸} // not a key
{𝐷, 𝐸}+ = {𝐷, 𝐸} // not a key
{𝐴, 𝐵, 𝐶}+ = {𝐴, 𝐵, 𝐶, 𝐷} // not a key
{𝐴, 𝐵, 𝐷}+ = {𝐴, 𝐵, 𝐷} // not a key
{𝐴, 𝐵, 𝐸}+ = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸} // is a key

({𝐶, 𝐷, 𝐸} is also a key.)

Thus we add a second projection onto one of the keys: W(A, B, E)

Summary:

S(A, B, C)
T(A, B, D)
U(A, C, D)
V(B, C, D)
W(A, B, E)

Page 13



Question 4
Note that only the second option is possible, because the 3NF condition is strictly more permissive than
the BCNF condition.

Thus, we need to construct an example in which there is an FD with a left-hand side that is not a superkey
but the right-hand side consists only of prime attributes.

Let us begin by creating a key so that we have some prime attributes:
AB → CDEF

Next, let us create an FD in which the left-hand side is not a superkey, but we use one (or more) of the
prime attributes on the right-hand side:
C → A

Thus, our final solution is:
AB → CDEF
C → A

To verify the solution, we can confirm that:
{𝐶}+ = {𝐴,𝐶} // BCNF violation
{𝐴, 𝐵}+ = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹} // a key; therefore, A and B are both prime.
Moreover, AB → CDEF is in BCNF.

Page 14


