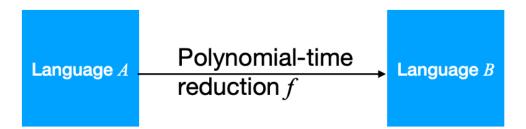


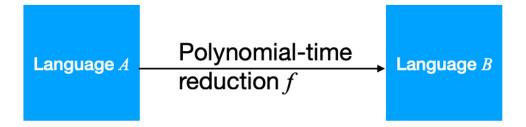
Polynomial-Time Reducibility



If there is a polynomial time decider D_B for language B then we can answer in polynomial time " $w \in A$?" as follows...

Polynomial time decider for A.

 $f(w) \in B \longrightarrow$ YES and $f(w) \notin B \longrightarrow$ NO.



 $f: \Sigma^* \rightarrow \Sigma^*$ and for every $w: w \in A$ iff $f(w) \in B$

Note. *A* cannot be harder than *B* (wrt polynomial-time solvability). Since we can solve *A* by solving *B* as a subroutine.

Note. We basically show that any language in *NP* can be reduced to the satisfiability problem.

If B is NP-Complete and $B \in P$ then P = NP

Proof. $B \in NP$ and B is NP-Hard.

That Is. $B \in NP$ and for every $A \in NP$: $A \leq_p B$.

Then. If $B \in P$ and for every $A \in NP$, $A \leq_p B$ then AinP.

If B is NP-Complete and $B \leq_p C$ for $C \in NP$, then C is NP-Complete

- Cook/Levin Theorem shows that *SAT* in *NP*-Complete.
- The proof works for 3SAT, showing 3SAT is NP-Complete.

NP-Complete Problems

- *SAT*
- 3*SAT*
- CLIQUE (3SAT \leq_p CLIQUE)
- Independent Set ($CLIQUE \leq_p IS$)
- Vertex Cover ($IS \leq_p VC$)
- Dominating Set ($VC \leq_p DOMINATING SET(DS)$)

$CLIQUE \leq_p IS$

 $\langle G,k
angle\in Clique$ if ex. $C\subseteq V$, |C|=k, and f.a. $x,y\in C$, $(x,y)\in E$. for G=(V,E)

 $\langle G',k'
angle\in IS$ if ex. $I\subseteq V',$ |I|=k, and f.a. $a,b\in I,$ $(a,b)\in E.$ for G'=(V',E')

Description of Reduction. For input $\langle G, k \rangle$ for Clique, we build input $\langle G', k' \rangle$ for IS as follows...

$$egin{aligned} V' &= V \ E' &= (V imes V) \setminus E \end{aligned}$$

G' has exactly these edges that don't exist in G.

k'=k

Show.

1. If $\langle G, k \rangle \in Clique$ then $\langle G', k' \rangle \in IS$ 2. If $\langle G', k' \rangle \in IS$ then $\langle G, k \rangle \in Clique$

If $\langle G,k
angle\in Clique$ then $\langle G',k'
angle\in IS$

Note. $G' = (V, (V \times V) \setminus E); \ k' = k.$

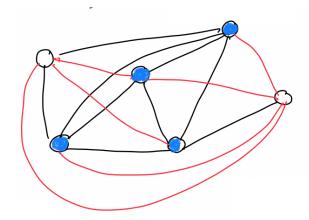
Let $C \subseteq V$, |C| = k, be a clique in G. We show that C is an independent set in G'.

Pick any $x, y \in C$. Since C is clique for $G(x, y) \in E \Rightarrow (x, y) \notin E' \Rightarrow$ no edges between vertices of C exist in $G' \Rightarrow C$ is independent set for G'!

If $\langle G',k' angle\in IS$ then $\langle G,k angle\in Clique$

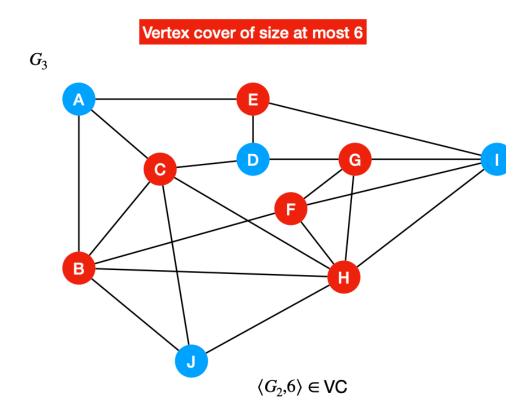
Let $I \subseteq V$ be an independent set for G! Then for $x, y \in I$, $(x, y) \notin E' = (V \times V) \setminus E$ $\Rightarrow (x, y) \in E \Rightarrow f.a. a, b \in I$ and $(a, b) \in E \Rightarrow I$ is a clique for G.

Example Graph



Chique in G IndepSet in G

 $VC \leq_p DS$



Recall. Vertex Cover.

Define Dominating Set (DS)

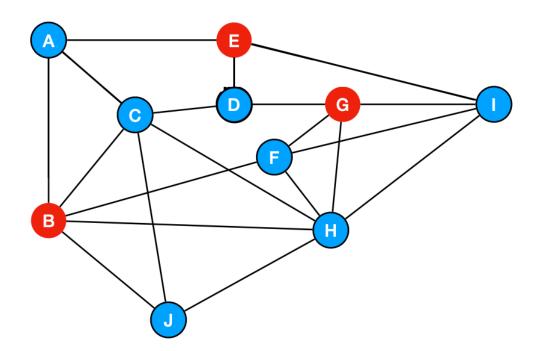
Note. Midterm question $DS \in NP$.

An Interesting Application for Vertex Cover

- Conflict Resolution...
 - Edges whenever two items (vertices) are in conflict to each other, such as time conflicts (edges) when scheduling items (vertices).
- Vertex Cover: items to remove such that the remaining vertex set is conflict free.
- Smallest vertex cover would be the minimum number of items to remove to make data set conflict free.

More Examples of Famous Graph Problems

- Dominating Set: An undirected graph G = (V, E) has k-dominating set if there exists V' ⊆ V, |V'| = k such that for all v ∈ V : v ∈ V' or v has a neighbour (adjacent vertex) w in G with w ∈ V'.
- $DOMSET = \{ \langle G, k \rangle \mid \text{has a dominating set of size at most } k \}.$



A Fun Application for Dominating Set

- Coverage
 - Vertices corresponds to city blocks.
 - Edges connect neighbouring city blocks.
- Place only as many ice cream stand at city blocks such that for each block: the next ice cream stand is at most one block away.

Previous Lecture

Lecture17

Next Lecture

Lecture19