
CSC 320 - Lecture 17

#np #membership #PATH #HAMPATH #sat #satisfiable #clique #independent-set

#vertex-cover #p #np #sat #cnf #np-complete #np-hard #3cnf #reducibility #mapping-

reducibility #polynomial-time-reducibility #3sat

Membership in NP

Question. How can we show that language is in NP?

Answer. By giving a polynomial verifier that checks any candidate solution or

certificate for correctness. What are certificates?

 .

A certificate that passes the verifier for consists of a list of vertices

 that correspond to a path from to in .

A verifier will ensure that are pairwise distinct vertices in ,

 and . Furthermore, each must be an arc in .

 .

A certificate that passes the verifier for consists of a list of

exactly all vertices in the graph that correspond to a path from to in .

A verifier will ensure that are pairwise distinct vertices in ,

 and . Furthermore, each must be an arc in .

Let be graph, and let

 is a -clique for if

(1) and

(2) for each pair :

Example

A

V

c

PATH = {⟨G, s, t⟩ | G is a directed graph that has a directed path from s to t}

PATH

v1, v2, . . . , vk s t G

v1, v2, . . . , vk G

v1 = s vk = t (vi, vi+1) G

HAMPATH = {⟨G, s, t⟩ | G is a directed graph with a Hamiltonian path from s to t}

HAMPATH

s t G

v1, v2, . . . , vk G

v1 = s vk = t (vi, vi+1) G

CLIQUE = {⟨G, k⟩ | G is an undirected graph with k-clique}

G = (V ,E) C ⊆ V

C k G

|C| ≥ k

a, b ∈ C (a, b) ∈ E

Example 3-Clique

 Clique, where (B, J, H) is the certificate.

, where (E, D, G) is the certificate, will not be accepted.

Example 4-Clique

 Clique, where (F, G, H, I) is the certificate.

Note. Showing 4-clique lets us know that we have 3-clique.

Clique

For , what does a certificate look like?

A subset of vertices with for each pair .

 Verifier

For each pair

If reject

Accept

Note. .

Let be a graph, and let

 is an independent set of size at least for if

(1) and

(2) for each pair

⟨G1, 3⟩ ∈

⟨G1, 3⟩

⟨G1, 4⟩ ∈

∈ NP

⟨G, k⟩

C ⊆ V |C| ≥ k a, b ∈ C : (a, b) ∈ E

Polynomial

If |C| < k then reject

a, b ∈ C

(a, b) ∉ E

O(n2) Using an adjacency matrix, for example.

IS = {⟨G, k⟩ | G is an undirected graph with an independent

set of size at least k}

G = (V ,E) I ⊆ V

I k G

|I| ≥ k

a, b ∈ I : (a, b) ∉ E

Example

Example Independent Set of Size At Least 4

, where (A, D, J, I) is the certificate.

IS

For , what does a certificate look like?

A subset of vertices with and for each pair .

 Verifier

For each pair

If reject

accept

Note. .

Let be a graph, and let

 is a vertex cover of size at most if

(1) and

(2) for each pair or

Example

⟨G2, 4⟩ ∈ IS

∈ NP

⟨G, k⟩

I ⊆ V |I| ≥ k a, b ∈ I : (a, b) ∉ E

Polynomial

If |I| < k then reject

a, b ∈ I

(a, b) ∈ E

O(n2) Using an adjacency matrix, for example.

VC = {⟨G, k⟩ | G is an undirected graph with a vertex

cover set of size at least k}

G = (V ,E) V ′ ⊆ V

V ′ k4for$G

|V ′| ≤ k

(a, b) ∈ E : a ∈ V ′ b ∈ V ′

Example Vertex Cover of Size At Most 6

, where (B, C, E, F, G, H) is the certificate.

The P VS NP Question (Revisited)

We Know.

Want to Know.

If ...

What about ?

Another Instance

, where must be false, can be true or false, and

must be false.

⟨G3, 6⟩ ∈ VC

P ⊆ NP

⋃
k

NTIME(nk) = NP ⊆ ⋃
k

TIME(2nk

)

P = NP

⋃
k

NTIME(nk) = ⋃
k

TIME(2nk

)

NP ⊆ P

SAT

Φ = (x1 ∧ x̄2) ∨ (x̄2 ∧ x2 ∧ x3) ∨ x̄1 x2 x3 x1

Question. Is satisfiable? YES!

Note. No other assignment satisfies formula . One satisfying assignment is

sufficient.

1 0 0 1

1 0 0 0

SAT

We can show that is in NP. A certificate for is a truth assignment for all

variables of the given formula. One can then evaluate in polynomial time in the

length of the formula whether or not the formula is satisfied.

Therefore, is in NP. BUT. Nobody knows whether or not the problem is also in P.

Note. The certificate would be assigning values to .

SAT Links P and NP

Theorem. if and only if . (Cook/Levin).

Idea. Take any language in , decidable by a nondeterministic TM in polynomial

time, and show how to reduce to in polynomial time.

Turn a polynomial-time nondeterministic TM into a boolean formula.

Polynomial-Time Reducibility

A function is a polynomial-time computable function if some

polynomial-time TM exists that halts with just on its tape, when started

on any input .

Language is polynomial-time mapping reducible (or polynomial-time

reducible) to language , written , if a polynomial-time computable

function exists, where for every , if and only if .

Function is called polynomial-time reduction for language to language .

Φ

Φ

Φ x1 x2 x3

SAT = {⟨Φ⟩ | Φ is a satisfiable Boolean formula}

SAT SAT

SAT

x1, . . . ,xn

SAT ∈ P P = NP

L NP

L SAT

f : Σ∗ ⟶ Σ∗

M f(w)

w

A

B A ≤p B

f : Σ∗ ⟶ Σ∗ w w ∈ A f(w) ∈ B

f A B

 computable function (by polynomial time TM) and for every if

and only if .

Therefore, if ... " ?" can be decided in time plus the time it takes to

decide whether or not .

Thus, if is decidable in polynomial time and , then is decidable in

polynomial time also.

Theorem. If and , then .

Proof.

Let be polynomial-time TM / Algorithm deciding , let be polynomial-time

reduction from to .

We describe polynomial-time TM deciding :

 "On input :

(1) Computer

(2) Run on input and output whatever outputs."

Since if and only if (is a reduction from to) and: can be

computed in polynomial time and is polynomial-time decider for .

 runs in polynomial time.

Proving Reductions

To prove that a language is polynomial-time reducible to a language normally

involves these three steps...

�� The description of a polynomial-time reduction / function

�� Proving that if then (Correctness of Reduction)

�� Proving that id then (Correctness of Reduction)

f : Σ∗ ⟶ Σ∗ w : w ∈ A

f(w) ∈ B

A ≤p B w ∈ A f(w)

f(w) ∈ B

B A ≤p B A

A ≤p B B ∈ P A ∈ P

M B f

A B

N A

N = w

f(w)

M f(w) M

w ∈ A f(w) ∈ B f A B f

M B

N

A B

f

w ∈ A f(w) ∈ B

f(w) ∈ B w ∈ A

3SAT

A special case of .

Here, formulas are of a special form.

Conjunctive normal form (CNF) where each clause is of size 3.

Literal. Boolean variable or negated Boolean variable, such as or .

Clause. Several literals connected with 's (i.e., in clause "or" operator, no "and"

operator).

Ex.

A Boolean formula is in conjunctive normal form, called cnf-formula, if: it

comprises several clauses connected with 's ("and" operator, no "or"

operator).

A cnf-formula formula is a 3cnf-formula if every clause has exactly three literals.

Cliques and CLIQUE

Given an undirected graph and .

Reminder. is a clique for if for each

If is a clique for and then is a k-clique for .

Describe polynomial-time reduction from to that converts a given

3cnf-formula with clauses to a graph, such that... 3cnf-formula is satisfiable if and

only if graph has a -clique.

Let be a 3cnf-formula.

SAT

x x̄

∨

(x1 ∨ x̄2 ∨ x̄3 ∨ x4 ∨ x̄5)

∧

(x1 ∨ x̄2 ∨ x̄3 ∨ x4 ∨ x̄5) ∧ (x̄1 ∨ x̄3 ∨ x4) ∧ (x4 ∨ x̄4 ∨ x̄5)

(a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ . . . ∧ (ak ∨ bk ∨ ck)

3SAT = {⟨Φ⟩ | Φ is a satisfiable 3cnf-formula}

G = (V ,E) V ′ ⊆ V

V ′ G x, y ∈ V ′ : (x, y) ∈ E

V ′ G |V ′| ≥ k V ′ G

3SAT ≤p CLIQUE

3SAT = {⟨Φ⟩ | Φ is a satisfiable 3cnf-formula}

CLIQUE = {⟨G, k⟩ | G is an undirected graph with k-clique}

f 3SAT CLIQUE

k

k

Φ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ . . . ∧ (ak ∨ bk ∨ ck)

Reduction : generates string where is an undirected graph (with

positive integer).

Vertices in : organized into groups, , of 3 nodes each, called

triplets... (Create 3k vertices for , on for each literal):

Each triplet corresponds to one of the clauses in

Each node in a triplet corresponds to a literal in associated clause.

Label each node of with its corresponding literal in .

Add edges in for all but two types of pairs of nodes in :

No edge is present between nodes in the same triplet,

No edge is present between two nodes with contradictory labels (i.e.,

between).

Example

�� Build . First for each clause we create 3 vertices.

�� Then create edges for vertex pairs of different clauses without contradictory

labels.

f ⟨G, k⟩ G k

G k t1, . . . , tk

G

Φ

G Φ

G G

xiandx̄i

Φ = (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

G = (V ,E)

Final Result

Correctness of reduction: we show that is satisfiable if and only if has -

clique.

 Suppose has satisfying assignment...

Corresponding to the satisfying assignment: at least one literal is true in

every clause.

In each triplet in : select one vertex corresponding to a true literal in the

satisfying assignment.

The vertices just selected form a -clique:

 vertices are selected since we chose one for each of the triplets.

Each pair of selected nodes is joined by an edge because no pair

stems from the same clause and no pair's labels are contradictory.

 Suppose has -clique

No two of the vertices in clique occur in same triplet since such pairs are

not connected by any edges.

Thus each of the triplets contains exactly one of the -clique nodes.

We can assign truth values to the variables of so that each literal

labelling a clique vertex is made true.

Two vertices labeled in a contradictory way are not connected by an

edge and hence cannot be both in the clique.

Φ G k

⇒ Φ

G

k

k k

⇐ G k

k k

Φ

This truth assignment satisfies because each triplet contains a clique

vertex and thus each clause contains a literal that is TRUE.

 is satisfiable.

Build Clique From Satisfying Assignment

1 0 0 1

 Has A -Clique

Because ... If is decidable in polynomial time, then so is

.

How can we decide whether a formula in 3cnf is decidable?

Φ

Φ

Φ x1 x2 x3

G k

3SAT ≤p CLIQUE CLIQUE

3SAT

Φ

Since is -Complete, so is

-Completeness

Definition. A language is -Complete if it satisfies the following two

conditions...

��

�� in -Hard

And: is -Hard if for every

Therefore, If is -Complete and then .

Furthermore, If is -Complete and for , then is -Complete.

Previous Lecture

Lecture16

Next Lecture

Lecture18

3SAT NP CLIQUE

NP

B NP

B ∈ NP

B NP

B NP A ∈ NP : A ≤p B

B NP B ∈ P P = NP

B NP B ≤p C C ∈ NP C NP

