CSC 320 - Lecture 17

#np #membership #PATH #HAMPATH #sat #satisfiable #clique #independent-set #vertex-cover #p #np #sat #cnf #np-complete #np-hard #3cnf #reducibility #mappingreducibility #polynomial-time-reducibility #3sat

Membership in NP

Question. How can we show that language A is in NP?

Answer. By giving a polynomial verifier *V* that checks any candidate solution or certificate *c* for correctness. What are certificates?

- $PATH = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph that has a directed path from } s \text{ to } t \}.$
 - A certificate that passes the verifier for PATH consists of a list of vertices v_1, v_2, \ldots, v_k that correspond to a path from s to t in G.
 - A verifier will ensure that v_1, v_2, \ldots, v_k are pairwise distinct vertices in G, $v_1 = s$ and $v_k = t$. Furthermore, each (v_i, v_{i+1}) must be an arc in G.
- $HAMPATH = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph with a Hamiltonian path from } s \text{ to } t \}.$
 - A certificate that passes the verifier for *HAMPATH* consists of a list of exactly all vertices in the graph that correspond to a path from *s* to *t* in *G*.
 - A verifier will ensure that v_1, v_2, \ldots, v_k are pairwise distinct vertices in G, $v_1 = s$ and $v_k = t$. Furthermore, each (v_i, v_{i+1}) must be an arc in G.

$CLIQUE = \{ \langle G,k angle \mid G ext{ is an undirected graph with }k ext{-clique} \}$

- Let G = (V, E) be graph, and let $C \subseteq V$
 - C is a k-clique for G if
 - (1) $|C| \ge k$ and
 - (2) for each pair $a, b \in C$: $(a, b) \in E$

Example

Example 3-Clique

- $\langle G_1,3
 angle\in$ Clique, where (B, J, H) is the certificate.
- $\langle G_1, 3 \rangle$, where (E, D, G) is the certificate, will not be accepted.

Example 4-Clique

 $\langle G_1,4
angle\in$ Clique, where (F, G, H, I) is the certificate.

Note. Showing 4-clique lets us know that we have 3-clique.

Clique $\in NP$

- For $\langle G, k \rangle$, what does a certificate look like?
 - A subset of vertices $C \subseteq V$ with $|C| \ge k$ for each pair $a, b \in C$: $(a, b) \in E$.
- Polynomial Verifier
 - If |C| < k then reject
 - For each pair $a, b \in C$
 - If $(a,b) \notin E$ reject
 - Accept

Note. $O(n^2)$. Using an adjacency matrix, for example.

 $IS = \{ \langle G, k \rangle \mid G \text{ is an undirected graph with an independent set of size at least } k \}$

- Let G = (V, E) be a graph, and let $I \subseteq V$
 - I is an independent set of size at least k for G if
 - (1) $|I| \ge k$ and
 - (2) for each pair $a, b \in I$: $(a, b) \notin E$

Example

Example Independent Set of Size At Least 4

 $\langle G_2,4
angle\in IS$, where (A, D, J, I) is the certificate.

 $\textbf{IS} \in NP$

- For $\langle G, k \rangle$, what does a certificate look like?
 - A subset of vertices $I \subseteq V$ with $|I| \ge k$ and for each pair $a, b \in I$: $(a, b) \notin E$.
- Polynomial Verifier
 - If |I| < k then reject
 - For each pair $a, b \in I$
 - If $(a,b) \in E$ reject
 - accept

Note. $O(n^2)$. Using an adjacency matrix, for example.

 $VC = \{ \langle G, k \rangle \mid G \text{ is an undirected graph with a vertex cover set of size at least } k \}$

- Let G = (V, E) be a graph, and let $V' \subseteq V$
 - V' is a vertex cover of size at most k4for\$G if
 - (1) $|V'| \le k$ and
 - (2) for each pair $(a,b) \in E$: $a \in V'$ or $b \in V'$

Example

Example Vertex Cover of Size At Most 6

 $\langle G_3, 6 \rangle \in VC$, where (B, C, E, F, G, H) is the certificate.

The P VS NP Question (Revisited)

• We Know.

• $P \subseteq NP$

$$igcup_k NTIME(n^k) = NP \subseteq igcup_k TIME(2^{n^k})$$

- Want to Know.
 - If P = NP...

$$igcup_k NTIME(n^k) = igcup_k TIME(2^{n^k})$$

• What about $NP \subseteq P$?

Another SAT Instance

 $\Phi = (x_1 \wedge \bar{x_2}) \lor (\bar{x_2} \wedge x_2 \wedge x_3) \lor \bar{x_1}$, where x_2 must be false, x_3 can be true or false, and x_1 must be false.

Note. No other assignment satisfies formula Φ . One satisfying assignment is sufficient.

Φ	x_1	x_2	x_3
1	0	0	1
1	0	0	0

SAT

 $SAT = \{ \langle \Phi
angle \mid \Phi ext{ is a satisfiable Boolean formula} \}$

We can show that *SAT* is in NP. A certificate for *SAT* is a truth assignment for all variables of the given formula. One can then evaluate in polynomial time in the length of the formula whether or not the formula is satisfied.

Therefore, *SAT* is in NP. **BUT**. Nobody knows whether or not the problem is also in P.

Note. The certificate would be assigning values to x_1, \ldots, x_n .

SAT Links P and NP

Theorem. $SAT \in P$ if and only if P = NP. (Cook/Levin).

Idea. Take any language *L* in *NP*, decidable by a nondeterministic TM in polynomial time, and show how to reduce *L* to *SAT* in polynomial time.

Turn a polynomial-time nondeterministic TM into a boolean formula.

Polynomial-Time Reducibility

- A function f: Σ* → Σ* is a polynomial-time computable function if some polynomial-time TM M exists that halts with just f(w) on its tape, when started on any input w.
- Language A is polynomial-time mapping reducible (or polynomial-time reducible) to language B, written A ≤_p B, if a polynomial-time computable function f : Σ* → Σ* exists, where for every w, w ∈ A if and only if f(w) ∈ B.
- Function *f* is called polynomial-time reduction for language *A* to language *B*.

 $f: \Sigma^* \longrightarrow \Sigma^*$ computable function (by polynomial time TM) and for every $w: w \in A$ if and only if $f(w) \in B$.

Therefore, if $A \leq_p B$... " $w \in A$?" can be decided in time f(w) plus the time it takes to decide whether or not $f(w) \in B$.

Thus, if *B* is decidable in polynomial time and $A \leq_p B$, then *A* is decidable in polynomial time also.

Theorem. If $A \leq_p B$ and $B \in P$, then $A \in P$.

Proof.

- Let *M* be polynomial-time TM / Algorithm deciding *B*, let *f* be polynomial-time reduction from *A* to *B*.
- We describe polynomial-time TM *N* deciding *A*:
 - N = "On input w:
 - (1) Computer f(w)
 - (2) Run M on input f(w) and output whatever M outputs."
- Since *w* ∈ *A* if and only if *f*(*w*) ∈ *B* (*f* is a reduction from *A* to *B*) and: *f* can be computed in polynomial time and *M* is polynomial-time decider for *B*.
 - N runs in polynomial time.

Proving Reductions

To prove that a language A is polynomial-time reducible to a language B normally involves these three steps...

- 1. The description of a polynomial-time reduction / function f
- 2. Proving that if $w \in A$ then $f(w) \in B$ (Correctness of Reduction)
- 3. Proving that id $f(w) \in B$ then $w \in A$ (Correctness of Reduction)

- A special case of *SAT*.
- Here, formulas are of a special form.
 - Conjunctive normal form (CNF) where each clause is of size 3.
- Literal. Boolean variable or negated Boolean variable, such as x or \bar{x} .
- **Clause**. Several literals connected with ∨'s (i.e., in clause "or" operator, no "and" operator).
 - Ex. $(x_1 \lor \bar{x_2} \lor \bar{x_3} \lor x_4 \lor \bar{x_5})$
- A Boolean formula is in conjunctive normal form, called cnf-formula, if: it comprises several clauses connected with s ("and" operator, no "or" operator).
 - $\bullet \hspace{0.1 cm} (x_1 \vee \bar{x_2} \vee \bar{x_3} \vee x_4 \vee \bar{x_5}) \wedge (\bar{x_1} \vee \bar{x_3} \vee x_4) \wedge (x_4 \vee \bar{x_4} \vee \bar{x_5})$
- A cnf-formula formula is a 3cnf-formula if every clause has *exactly* three literals.
 - $(a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \ldots \land (a_k \lor b_k \lor c_k)$
- $\bullet \ \ 3SAT = \{ \langle \Phi \rangle \ | \ \Phi \ \text{is a satisfiable 3cnf-formula} \}$

Cliques and CLIQUE

Given an undirected graph G = (V, E) and $V' \subseteq V$.

Reminder. V' is a **clique** for G if for each $x, y \in V'$: $(x, y) \in E$

If V' is a clique for G and $|V'| \ge k$ then V' is a **k-clique** for G.

$3SAT \leq_p CLIQUE$

- $3SAT = \{ \langle \Phi
 angle \mid \Phi ext{ is a satisfiable 3cnf-formula} \}$
- $CLIQUE = \{ \langle G,k \rangle \mid G ext{ is an undirected graph with } k ext{-clique} \}$

Describe polynomial-time reduction *f* from 3*SAT* to *CLIQUE* that converts a given 3cnf-formula with *k* clauses to a graph, such that... 3cnf-formula is satisfiable if and only if graph has a *k*-clique.

Let $\Phi = (a_1 \lor b_1 \lor c_1) \land (a_2 \lor b_2 \lor c_2) \land \ldots \land (a_k \lor b_k \lor c_k)$ be a 3cnf-formula.

- Reduction *f*: generates string $\langle G, k \rangle$ where *G* is an undirected graph (with *k* positive integer).
 - Vertices in G: organized into k groups, t₁,..., t_k, of 3 nodes each, called triplets... (Create 3k vertices for G, on for each literal):
 - Each triplet corresponds to one of the clauses in Φ
 - Each node in a triplet corresponds to a literal in associated clause.
 - Label each node of G with its corresponding literal in Φ .
 - Add edges in *G* for all but two types of pairs of nodes in *G*:
 - No edge is present between nodes in the same triplet,
 - No edge is present between two nodes with contradictory labels (i.e., between x_iandx_i).

Example

- $\Phi = (x_1 ee ar{x_2} ee x_3) \land (ar{x_1} ee ar{x_1} ee x_3) \land (x_1 ee x_2 ee x_3)$
 - 1. Build G = (V, E). First for each clause we create 3 vertices.

2. Then create edges for vertex pairs of different clauses without contradictory labels.

Final Result

- Correctness of reduction: we show that Φ is satisfiable if and only if G has k-clique.
- \Rightarrow Suppose Φ has satisfying assignment...
 - Corresponding to the satisfying assignment: at least one literal is true in every clause.
 - In each triplet in *G*: select one vertex corresponding to a true literal in the satisfying assignment.
 - The vertices just selected form a *k*-clique:
 - *k* vertices are selected since we chose one for each of the *k* triplets.
 - Each pair of selected nodes is joined by an edge because no pair stems from the same clause and no pair's labels are contradictory.
- \leftarrow Suppose *G* has *k*-clique
 - No two of the vertices in clique occur in same triplet since such pairs are not connected by any edges.
 - Thus each of the *k* triplets contains exactly one of the *k*-clique nodes.
 - We can assign truth values to the variables of Φ so that each literal labelling a clique vertex is made true.
 - Two vertices labeled in a contradictory way are not connected by an edge and hence cannot be both in the clique.

- This truth assignment satisfies Φ because each triplet contains a clique vertex and thus each clause contains a literal that is TRUE.
- Φ is satisfiable.

Build Clique From Satisfying Assignment

Φ	x_1	x_2	x_3
1	0	0	1

G Has A k-Clique

 $\Phi = (x_1 \vee \bar{x_2} \vee x_3) \land (\bar{x_1} \vee \bar{x_1} \vee x_3) \land (x_1 \vee x_2 \vee x_3)$

Because $3SAT \leq_p CLIQUE$... If CLIQUE is decidable in polynomial time, then so is 3SAT.

How can we decide whether a formula Φ in 3cnf is decidable?

Since 3SAT is NP-Complete, so is CLIQUE

NP-Completeness

Definition. A language *B* is *NP***-Complete** if it satisfies the following two conditions...

- 1. $B \in NP$
- 2. *B* in *NP*-Hard

And: *B* is *NP*-Hard if for every $A \in NP$: $A \leq_p B$

Therefore, If B is NP-Complete and $B \in P$ then P = NP.

Furthermore, If B is NP-Complete and $B \leq_p C$ for $C \in NP$, then C is NP-Complete.

Previous Lecture

Lecture16

Next Lecture

Lecture18