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Membership in NP

Question. How can we show that language  is in NP?

Answer. By giving a polynomial verifier  that checks any candidate solution or

certificate  for correctness. What are certificates?

 .

A certificate that passes the verifier for  consists of a list of vertices 

 that correspond to a path from  to  in .

A verifier will ensure that  are pairwise distinct vertices in , 

 and . Furthermore, each  must be an arc in .

 .

A certificate that passes the verifier for  consists of a list of

exactly all vertices in the graph that correspond to a path from  to  in .

A verifier will ensure that  are pairwise distinct vertices in , 

 and . Furthermore, each  must be an arc in .

 

Let  be graph, and let 

 is a -clique for  if

(1)  and

(2) for each pair : 

Example

A

V

c

PATH = {⟨G, s, t⟩ | G is a directed graph that has a directed path from s to t}

PATH

v1, v2, . . . , vk s t G

v1, v2, . . . , vk G

v1 = s vk = t (vi, vi+1) G

HAMPATH = {⟨G, s, t⟩ | G is a directed graph with a Hamiltonian path from s to t}

HAMPATH

s t G

v1, v2, . . . , vk G

v1 = s vk = t (vi, vi+1) G

CLIQUE = {⟨G, k⟩ | G is an undirected graph with k-clique}

G = (V ,E) C ⊆ V

C k G

|C| ≥ k

a, b ∈ C (a, b) ∈ E



Example 3-Clique

 Clique, where (B, J, H) is the certificate.

, where (E, D, G) is the certificate, will not be accepted.

Example 4-Clique

 Clique, where (F, G, H, I) is the certificate.

Note. Showing 4-clique lets us know that we have 3-clique.

Clique 

For , what does a certificate look like?

A subset of vertices  with  for each pair .

 Verifier

For each pair 

If  reject

Accept

Note. . 

  

Let  be a graph, and let 

 is an independent set of size at least  for  if

(1)  and

(2) for each pair 

⟨G1, 3⟩ ∈

⟨G1, 3⟩

⟨G1, 4⟩ ∈

∈ NP

⟨G, k⟩

C ⊆ V |C| ≥ k a, b ∈ C : (a, b) ∈ E

Polynomial

If |C| < k then reject

a, b ∈ C

(a, b) ∉ E

O(n2) Using an adjacency matrix, for example.

IS = {⟨G, k⟩ | G is an undirected graph with an independent

set of size at least k}

G = (V ,E) I ⊆ V

I k G

|I| ≥ k

a, b ∈ I : (a, b) ∉ E



Example

Example Independent Set of Size At Least 4

, where (A, D, J, I) is the certificate.

IS 

For , what does a certificate look like?

A subset of vertices  with  and for each pair .

 Verifier

For each pair 

If  reject

accept

Note. . 

  

Let  be a graph, and let 

 is a vertex cover of size at most  if

(1)  and

(2) for each pair  or 

Example

⟨G2, 4⟩ ∈ IS

∈ NP

⟨G, k⟩

I ⊆ V |I| ≥ k a, b ∈ I : (a, b) ∉ E

Polynomial

If |I| < k then reject

a, b ∈ I

(a, b) ∈ E

O(n2) Using an adjacency matrix, for example.

VC = {⟨G, k⟩ | G is an undirected graph with a vertex

cover set of size at least k}

G = (V ,E) V ′ ⊆ V

V ′ k4for$G

|V ′| ≤ k

(a, b) ∈ E : a ∈ V ′ b ∈ V ′



Example Vertex Cover of Size At Most 6

, where (B, C, E, F, G, H) is the certificate.

The P VS NP Question (Revisited)

We Know.

Want to Know.

If ...

What about ?

Another  Instance

, where  must be false,  can be true or false, and 

must be false.

⟨G3, 6⟩ ∈ VC

P ⊆ NP

⋃
k

NTIME(nk) = NP ⊆ ⋃
k

TIME(2nk

)

P = NP

⋃
k

NTIME(nk) = ⋃
k

TIME(2nk

)

NP ⊆ P

SAT

Φ = (x1 ∧ x̄2) ∨ (x̄2 ∧ x2 ∧ x3) ∨ x̄1 x2 x3 x1



Question. Is  satisfiable? YES!

Note. No other assignment satisfies formula . One satisfying assignment is

sufficient.

1 0 0 1

1 0 0 0

SAT

 

We can show that  is in NP. A certificate for  is a truth assignment for all

variables of the given formula. One can then evaluate in polynomial time in the

length of the formula whether or not the formula is satisfied.

Therefore,  is in NP. BUT. Nobody knows whether or not the problem is also in P.

Note. The certificate would be assigning values to .

SAT Links P and NP

Theorem.  if and only if . (Cook/Levin).

Idea. Take any language  in , decidable by a nondeterministic TM in polynomial

time, and show how to reduce  to  in polynomial time.

Turn a polynomial-time nondeterministic TM into a boolean formula.

Polynomial-Time Reducibility

A function  is a polynomial-time computable function if some

polynomial-time TM  exists that halts with just  on its tape, when started

on any input .

Language  is polynomial-time mapping reducible (or polynomial-time

reducible) to language , written , if a polynomial-time computable

function  exists, where for every ,  if and only if .

Function  is called polynomial-time reduction for language  to language .

Φ

Φ

Φ x1 x2 x3

SAT = {⟨Φ⟩ | Φ is a satisfiable Boolean formula}

SAT SAT

SAT

x1, . . . ,xn

SAT ∈ P P = NP

L NP

L SAT

f : Σ∗ ⟶ Σ∗

M f(w)

w

A

B A ≤p B

f : Σ∗ ⟶ Σ∗ w w ∈ A f(w) ∈ B

f A B



 computable function (by polynomial time TM) and for every  if

and only if .

Therefore, if ... " ?" can be decided in time  plus the time it takes to

decide whether or not .

Thus, if  is decidable in polynomial time and , then  is decidable in

polynomial time also.

Theorem. If  and , then .

Proof.

Let  be polynomial-time TM / Algorithm deciding , let  be polynomial-time

reduction from  to .

We describe polynomial-time TM  deciding :

 "On input :

(1) Computer 

(2) Run  on input  and output whatever  outputs."

Since  if and only if  (  is a reduction from  to ) and:  can be

computed in polynomial time and  is polynomial-time decider for .

 runs in polynomial time.

Proving Reductions

To prove that a language  is polynomial-time reducible to a language  normally

involves these three steps...

�� The description of a polynomial-time reduction / function 

�� Proving that if  then  (Correctness of Reduction)

�� Proving that id  then  (Correctness of Reduction)

f : Σ∗ ⟶ Σ∗ w : w ∈ A

f(w) ∈ B

A ≤p B w ∈ A f(w)

f(w) ∈ B

B A ≤p B A

A ≤p B B ∈ P A ∈ P

M B f

A B

N A

N = w

f(w)

M f(w) M

w ∈ A f(w) ∈ B f A B f

M B

N

A B

f

w ∈ A f(w) ∈ B

f(w) ∈ B w ∈ A

3SAT



A special case of .

Here, formulas are of a special form.

Conjunctive normal form (CNF) where each clause is of size 3.

Literal. Boolean variable or negated Boolean variable, such as  or .

Clause. Several literals connected with 's (i.e., in clause "or" operator, no "and"

operator).

Ex. 

A Boolean formula is in conjunctive normal form, called cnf-formula, if: it

comprises several clauses connected with 's ("and" operator, no "or"

operator).

    

A cnf-formula formula is a 3cnf-formula if every clause has exactly three literals.

  

Cliques and CLIQUE

Given an undirected graph  and .

Reminder.  is a clique for  if for each 

If  is a clique for  and  then  is a k-clique for .

 

Describe polynomial-time reduction  from  to  that converts a given

3cnf-formula with  clauses to a graph, such that... 3cnf-formula is satisfiable if and

only if graph has a -clique.

Let    be a 3cnf-formula.

SAT

x x̄

∨

(x1 ∨ x̄2 ∨ x̄3 ∨ x4 ∨ x̄5)

∧

(x1 ∨ x̄2 ∨ x̄3 ∨ x4 ∨ x̄5) ∧ (x̄1 ∨ x̄3 ∨ x4) ∧ (x4 ∨ x̄4 ∨ x̄5)

(a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ . . . ∧ (ak ∨ bk ∨ ck)

3SAT = {⟨Φ⟩ | Φ is a satisfiable 3cnf-formula}

G = (V ,E) V ′ ⊆ V

V ′ G x, y ∈ V ′ : (x, y) ∈ E

V ′ G |V ′| ≥ k V ′ G

3SAT ≤p CLIQUE

3SAT = {⟨Φ⟩ | Φ is a satisfiable 3cnf-formula}

CLIQUE = {⟨G, k⟩ | G is an undirected graph with k-clique}

f 3SAT CLIQUE

k

k

Φ = (a1 ∨ b1 ∨ c1) ∧ (a2 ∨ b2 ∨ c2) ∧ . . . ∧ (ak ∨ bk ∨ ck)



Reduction : generates string  where  is an undirected graph (with 

positive integer).

Vertices in : organized into  groups, , of 3 nodes each, called

triplets... (Create 3k vertices for , on for each literal):

Each triplet corresponds to one of the clauses in 

Each node in a triplet corresponds to a literal in associated clause.

Label each node of  with its corresponding literal in .

Add edges in  for all but two types of pairs of nodes in :

No edge is present between nodes in the same triplet,

No edge is present between two nodes with contradictory labels (i.e.,

between ).

Example

    

�� Build . First for each clause we create 3 vertices.

�� Then create edges for vertex pairs of different clauses without contradictory

labels.

f ⟨G, k⟩ G k

G k t1, . . . , tk

G

Φ

G Φ

G G

xiandx̄i

Φ = (x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x̄1 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

G = (V ,E)



Final Result

Correctness of reduction: we show that  is satisfiable if and only if  has -

clique.

 Suppose  has satisfying assignment...

Corresponding to the satisfying assignment: at least one literal is true in

every clause.

In each triplet in : select one vertex corresponding to a true literal in the

satisfying assignment.

The vertices just selected form a -clique:

 vertices are selected since we chose one for each of the  triplets.

Each pair of selected nodes is joined by an edge because no pair

stems from the same clause and no pair's labels are contradictory.

 Suppose  has -clique

No two of the vertices in clique occur in same triplet since such pairs are

not connected by any edges.

Thus each of the  triplets contains exactly one of the -clique nodes.

We can assign truth values to the variables of  so that each literal

labelling a clique vertex is made true.

Two vertices labeled in a contradictory way are not connected by an

edge and hence cannot be both in the clique.

Φ G k

⇒ Φ

G

k

k k

⇐ G k

k k

Φ



This truth assignment satisfies  because each triplet contains a clique

vertex and thus each clause contains a literal that is TRUE.

 is satisfiable.

Build Clique From Satisfying Assignment

1 0 0 1

 Has A -Clique

Because ... If  is decidable in polynomial time, then so is 

.

How can we decide whether a formula  in 3cnf is decidable?

Φ

Φ

Φ x1 x2 x3

G k

3SAT ≤p CLIQUE CLIQUE

3SAT

Φ



Since  is -Complete, so is 

-Completeness

Definition. A language  is -Complete if it satisfies the following two

conditions...

�� 

��  in -Hard

And:  is -Hard if for every 

Therefore, If  is -Complete and  then .

Furthermore, If  is -Complete and  for , then  is -Complete.

Previous Lecture

Lecture16

Next Lecture

Lecture18

3SAT NP CLIQUE

NP

B NP

B ∈ NP

B NP

B NP A ∈ NP : A ≤p B

B NP B ∈ P P = NP

B NP B ≤p C C ∈ NP C NP


