CSC 320 - Lecture 16

#time-complexity = #running-time = #nondeterministic-deciders #p #np = #deterministic
#HAMPATH #satisfiable = #boolean = #np-complete #PATH #TM #turing-machines

#complexity-class

Complexity Relationships Between Different
Types of TMs

Theorem. Let t(n) be a function, t(n) > n. Every t(n)-time multitape TM has an
equivalent O(¢*(n)) time single-tape TM.

Idea. On single-tape TM, simulate single step on multitape TM.

Show. Uses at most O(¢(n)) steps.

Theorem. For every multitape Turing Machine there is an equivalent single-tape
Turing Machine.

Analyze running time single TM uses in this proof to simulate multitape TM.

More formally let M = (Q, 2, T, 8, qo, qaccept, Greject) D€ Multitape TM with & tapes.

» Convert M into single-tape Turing Machine S = (Q, %,IV, 8, o, Gaccepts Greject) With...
« '=TUu{#Iu{#}U{alaecT,ag¢T},#,#¢T.
 and transition function §’ for S simulates each move of M.
« for each step of M : S moves from virtual tape to virtual tape. How
many steps for one scan?
o First Scan. Search for all current head positions and determine
content of current cells on all virtual tapes.
» Length of active position of tape: t(n) € O(t(n)).
o Second Scan. Update content of current cells and update head
positions, according to transition that M executing.
« = for t(n) many steps, Stakes O(t*(n))

o If a virtual tape head moves right encountering #, make room on
virtual tape: all tape content starting at # is shifted by 1 cell to
the right and adds a blank for the #.

i

The first and second scan take O(t(n)).
Note. ¢(n)-time multitape TM. Assume t(n) > n.

Question. How do we talk about time complexity when the TM is a nondeterministic
decider?

Running Time / Time Complexity For
Nondeterministic Deciders

Definition. Let N be a nondeterministic decider. The running time or time
complexity of N is the function f: N — N where f(n) is the maximum number of
steps that N uses on any branch of its computation on any input of length n.

If f(n) is the running time of N then we say: N runs in time f(n) and N is an f(n)-
time nondeterministic TM.

Time Complexity Deciders VS Nondeterministic
Deciders

Deterministic Nondeterministic
f(n) reject” f(n)

l _accept

l i _accept/reject i reject l

Note. Running time of deciders is a model for the running time when running
algorithms on a classical computer.

Definition of running time for nondeterministic deciders. Not intended to correspond
to real-world computing device. Purely theoretical concepts for characterizing
complexity of important classes of computational problems.

Theorem

Let t(n) be a function, t(n) > n. Then every t(n)-time nondeterministic single-tape T™M
has an equivalent 29t(™)-time deterministic single-tape TM.

N : t(n)-time nondeterministic TM. Assume t(n) > n. Input length: n. Total number of
leaves < ™,

Note. 2¢t(n) — 20(t(n))

& rin

Analysis of Simulation

e Simulation in BFS manner...
o first visit root
o visit all nodes at depth d before any nodes at depth d + 1.
o Tree size: number of nodes < 2. number of leaves = number of nodes O(b'™))
» Time to travel from root down to a node: O(t(n))
e = D'srunning time: O(t(n)) - '™ = O(t(n)) - 20t™),

pt) — 9log:(0") __ g(logsb)t(n)

O(t(n)) - b = O(t(n)) - 27
— 0(2109275(") . 20(’5(”)))
— 90(t(n))

e TM D has three tapes; conversion into single-tape TM.

O(2O(t(n)))2 _ 0(20(2t(n)))
_ 0(20(t(n)))

Complexity Class P

P = LkJ TIME(n*)

i.e., Pis the class of languages that are decidable in polynomial time on a
deterministic single-tape TM.

e P: often considered that class of problems solvable - on a classical computer - in
practice.

e Not entirely accurate but many problems in P indeed solvable in practice.

o If a problem A4 is in P then there exists an n°-time algorithm for A4, for some
constant c.

Problems in P - (O(n3))

Note. We are not claiming here right now any efficient algorithms. We just want to
show membership in P.

Example 1

A = {(G) | G is a connected undirected graph}

(G) =(1,2,3,4)((1,2),(2,3),(1,3), (1,4))

e M ="0Oninput (G):
1. Select first node of G; mark it (1 step)
2. Repeat following step until no new nodes are marked (< n times)

e For each node v in G: mark v if incident to an edge where the other
endpoint is already marked. (< n? edges)
3. Scan all nodes of G: determine whether or not they all are marked (n steps)
o If they are: accept
e Otherwise: reject."

Note. We do not have to worry whether this is a single tape Turing Machine or a
Multi-Tape Turing Machine.

Example 2

PATH

o Input. A directed graph G = (V, A) and vertices s,t € V.
» Question. Does there exist a directed path from s to ¢ in G?
e We assume that |V| = n.

PATH = {(G, s,t) | G is a directed graph that has a directed path froms to ¢}.

PATH € P

o Observe that a brute-force algorithm for this problem is too slow:
o Examine all potential pathsin G, i.e., sequences of nodes from V of length
at most n.
e Note. If any directed path exists from s to ¢, then there is one of
length at most n.
o Check wether any potential path is a directed path from s to ¢.
o But the number of such potential paths is roughly n? (exponential in
number of nodes in G).
o Brute-force algorithm uses exponential times.
e Idea. Polynomial time algorithm for PATH.
o Use breadth-first search
o Mark all nodes in G that are reachable from s by directed paths of length 1
e Mark all nodes in G that are reachable from s by directed paths of length 2
o Mark all nodes in G that are reachable from s by directed paths of length 3
e Mark all nodes in G that are reachable from s by directed paths of length n
o Check whether or not ¢ was discovered.

Running Time

e Polynomial time algorithm / decider M for PATH:
« M ="Oninput (G,s,t), where G is a directed graph with nodes s and t:
« Place a mark on node s (O(1))
« Repeat until no additional nodes are marked: (O(n))
e Scan arcs of G: If arc (a,b) is found where a is marked and b is
unmarked then mark b (O(m) = O(n?))
« If tis marked accept, else, reject" (O(1))

Running time is O(n?).

Class P

M be a (deterministic) decider.
e Running time or time complexity of M: function f: N — N, where f(n) is
maximum number of steps that M uses on any input of length n.
o If f(n) is the running time of M, we say that M runs in time f(n) and that
M is an f(n)-time TM.
t: N — R+ be a function.
o Time complexity class TIME(t(n)): collection of all languages decidable by
an O(t(n))-time TM.
t(n) be a function, t(n) > n.
e Every t(n)-time multitape TM has equivalent O(t?(n))-time single-tape TM.
P: class of languages that are decidable in polynomial time on a
deterministic single-tape Turing machine.

Class NP

e N nondeterministic decider.

« Running time of N: function f: N — N, where f(n) is maximum number of
steps that N uses on any branch of its computation on any input of length
n.
e t:N— R ¢(n) >n.
« Every t(n)-time nondeterministic single-tape TM has an equivalent 20t®)-
time deterministic single-tape TM.
» Let A be alanguage. A verifier for A is an algorithm vV with...
o A= {w]|V accepts (w, c) for some string c}.
 Verifier V uses certificates c to verify w € A.

NP, class of problems solvable in nondeterministic polynomial time, is the class of
languages that have polynomial time verifiers.

weA?
w >-/Yes: if c is a yes-answer forw = w € A
We still
c e No: if ¢ is a not yes-answer for w = don’t know
whether or not

weA

NTIME(t(n)) = {L | L is a language decided by an O(t(n))

-time nondeterministic Turing machine}

NP =| JNTIME(n")
k

Terminology

o Let V be a verifier...
e Running time of V measured in terms of length of w ((w, ¢)) only
« a polynomial-time verifier runs in polynomial time in length of w.
« Language A is polynomially verifiable if it has a polynomial-time verifier V.
e Note. If V polynomial verifier V then certificate ¢ has polynomial length in terms
of length of w.

Example

Let G be a directed graph... A Hamiltonian path in G is a directed path that visits
each node exactly once.

T

S/ T
~L A

Where (S, A) -> (A, T) is a Hamiltonian Path.

HAMPATH:

e Input. Directed graph G = (V, A), vertices s,t € V.
e Question. Does there exist a Hamiltonian path from sto ¢ in G?

Language HAMPATH = {(G, s,t) | G is a directed graph with a Hamiltonian path from s to ¢}.
Does HAMPATH have a polynomial verifier vV?

o Certificate for HAMPATH?
o To verify (G, s,t) € HAMPATH: certificate ¢ must be Hamiltonian path from
stot.
o V takes as input (G, s,t) and c and tests whether c is a Hamiltonian path from s
totinG.

HAMPATH € NP

Nondeterministic TM that decides HAMPATH in nondeterministic polynomial time:

e« N; ="Oninput (G, s,t), where G is a directed graph with nodes s and ¢
e Write a list of n numbers py,...,p,, where n is the number of nodes in G
o Each number is nondeterministically selected to be between 1and n
(Certificate)
o Check for repetitions in list. If any are found, rejects.
o Check whether s = p; and t = p,. If either fail, reject.
e For each i between1and n — 1, check whether (p;, pi+1) is an arc of G. If not,
reject.
o If all tests have been passed, accept."

The verifier is the last 4 points listed above. The verifier runs in polynomial time.

Theorem

A language A isin NP if and only if A is decided by some nondeterministic
polynomial-time Turing machine.

Idea. We convert a polynomial time verifier V to an equivalent nondeterministic
polynomial-time Turing machine N and vice versa.

e N simulates V by guessing the certificate.
e V simulates N by using accepting branch as certificate.

Proof. Converting a polynomial time verifier V to an equivalent nondeterministic
polynomial-time Turing machine N:

e Let A € NP and show that 4 is decided by a nondeterministic polynomial-time
T™ N.

e Let V be a polynomial time verifier for A that exists by definition of NP.

o Assume that V is a TM that runs in time n* and construct N as follows...
e N ="On input w of length n: Nondeterministically select string c of

length at most n*.

e Run V on input (w,c)
o If V accepts, accept; otherwise, reject".

Proof. Assume A is decided by polynomial-time nondeterministic TM N (Other
Direction):

e Construct polynomial-time verifier V as follows...
e« V="0ninput (w,c), where w and ¢ are strings:
o Simulate N on input w; each symbol of ¢ describes nondeterministic
choice made at each step

o If this branch of N's computation accepts, accept; otherwise, reject".

Examples of Problems / Languages in NP

e PATH - note that we already know that PATH is also in P

« HAMPATH
o Clique: CLIQUE = {(G, k) | G is an undirected graph with k-clique}
e Independent Set: IS = {(G,k) | G
is an undirected graph with an independent set of size at least k}
e Vertex Cover:VC = {(G,k) |G
is an undirected graph with a vertex cover set of size at least &}
e Subset Sum: SUBSET — SUM = {(S,t) | S = {z1,...,z&}
, and for some {y1,...,y} C {z1,...,2x} , we have &y, =t}

The P VS NP Question

¢ We Know.
e PCNP

NP C | JTIME@2")
k

e \What about NP C P?

NP-Completeness

1970s: Stephen Cook (UofT) and Leonid Levin (MIT) discovered problems in NP where
individual complexity is related to that of entire class.

If polynomial-time algorithm exists for any such problem: all problems in NP would
be polynomial time solvable.

Problems called NP-Complete. NP-Completeness important for both theory and
practice.

Satisfiability
First problem to be shown NP-complete. SAT = {(®) | ® is a satisfiable Boolean formula}.

Terminology

Boolean Variables. VVariable that can take on the values TRUE and FALSE. Usually,
represent TRUE by 1 and FALSE by O.

Boolean Operations. AND, OR, NOT. Represented by symbols A, Vv, and ™.

Boolean Formulas. Expression involving Boolean variables and operators.
dp=(ZNy)V(zAZ2).

Note. The over bar is shorthand for 7 : Z means Tz.

Boolean Operations and Formulas

« AND
e 0AN0=0
e OAN1=0
e 1N0=0
e IN1=1
e OR
e 0VO0=0
e OV1=1
e 1V0=1
e 1vVl=1
o NOT
e 0=1
e 1=0

A Boolean formula is satisfiable if some assignment of 0's and 1's to the variables
makes the formula evaluate to 1.

Formula ¢ is satisfiable because assignment z = 0, y = 1, and z = 0 makes ¢ evaluate to
1.

We say the assignment satisfies ¢.

The satisfiability problem (SAT): test whether or not a Boolean formula is
satisfiable.

Previous Lecture

Lecturel15

Next Lecture

Lecturel1/

