CSC 320 - Lecture 16 #time-complexity #running-time #nondeterministic-deciders #p #np #deterministic #HAMPATH #satisfiable #boolean #np-complete #PATH #TM #turing-machines #complexity-class

Complexity Relationships Between Different Types of TMs

Theorem. Let t(n) be a function, $t(n) \ge n$. Every t(n)-time multitape TM has an equivalent $O(t^2(n))$ time single-tape TM.

Idea. On single-tape TM, simulate single step on multitape TM.

Show. Uses at most O(t(n)) steps.

Theorem. For every multitape Turing Machine there is an equivalent single-tape Turing Machine.

Analyze running time single TM uses in this proof to simulate multitape TM.

More formally let $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ be multitape TM with k tapes.

- Convert M into single-tape Turing Machine $S = (Q, \Sigma, \Gamma', \delta', q_0, q_{accept}, q_{reject})$ with...
 - $\Gamma'=\Gamma\cup\{\#\}\cup\{\dot{\#}\}\cup\{\dot{a}\mid a\in\Gamma,\dot{a}
 ot\in\Gamma\},\#,\dot{\#}
 ot\in\Gamma$.
 - and transition function δ' for S simulates each move of M.
 - for each step of *M* : *S* moves from virtual tape to virtual tape. How many steps for one scan?
 - **First Scan**. Search for all current head positions and determine content of current cells on all virtual tapes.
 - Length of active position of tape: $t(n) \in O(t(n))$.
 - **Second Scan**. Update content of current cells and update head positions, according to transition that *M* executing.
 - \Rightarrow for t(n) many steps, Stakes $O(t^2(n))$

• If a virtual tape head moves right encountering #, make room on virtual tape: all tape content starting at # is shifted by 1 cell to the right and adds a blank for the #.

The first and second scan take O(t(n)).

Note. t(n)-time multitape TM. Assume $t(n) \ge n$.

Question. How do we talk about time complexity when the TM is a nondeterministic decider?

Running Time / Time Complexity For Nondeterministic Deciders

Definition. Let *N* be a nondeterministic decider. The **running time** or **time complexity** of *N* is the function $f : \mathbb{N} \longrightarrow \mathbb{N}$ where f(n) is the maximum number of steps that *N* uses on any branch of its computation on any input of length *n*.

If f(n) is the running time of N then we say: N runs in time f(n) and N is an f(n)-time nondeterministic TM.

Time Complexity Deciders VS Nondeterministic Deciders

Note. Running time of deciders is a model for the running time when running algorithms on a classical computer.

Definition of running time for nondeterministic deciders. Not intended to correspond to real-world computing device. Purely theoretical concepts for characterizing complexity of important classes of computational problems.

Theorem

Let t(n) be a function, $t(n) \ge n$. Then every t(n)-time nondeterministic single-tape TM has an equivalent $2^{O(t(n))}$ -time deterministic single-tape TM.

N: t(n)-time nondeterministic TM. Assume $t(n) \ge n$. Input length: n. Total number of leaves $\le b^{t(n)}$.

Note. $2^{c \cdot t(n)} = 2^{O(t(n))}$.

Analysis of Simulation

- Simulation in BFS manner...
 - first visit root
 - visit all nodes at depth d before any nodes at depth d + 1.
- Tree size: number of nodes < 2. number of leaves \Rightarrow number of nodes $O(b^{t(n)})$)
- Time to travel from root down to a node: O(t(n))
- $\Rightarrow D$'s running time: $O(t(n)) \cdot b^{t(n)} = O(t(n)) \cdot 2^{O(t(n))}$.

$$b^{t(n)} = 2^{log_2(b^{t(n)})} = 2^{(log_2b)t(n)}$$

$$egin{aligned} O(t(n)) \cdot b^{t(n)} &= O(t(n)) \cdot 2^{O(t(n))} \ &= 0(2^{log_2 t(n)} \cdot 2^{0(t(n))}) \ &= 2^{O(t(n))} \end{aligned}$$

• TM D has three tapes; conversion into single-tape TM.

$$egin{aligned} O(2^{O(t(n))})^2 &= O(2^{O(2\cdot t(n))}) \ &= O(2^{O(t(n))}) \end{aligned}$$

Complexity Class *P*

$$P = igcup_k TIME(n^k)$$

i.e., *P* is the class of languages that are decidable in polynomial time on a deterministic single-tape TM.

- *P*: often considered that class of problems solvable on a classical computer in practice.
- Not entirely accurate but many problems in *P* indeed solvable in practice.
- If a problem *A* is in *P* then there exists an *n*^{*c*}-time algorithm for *A*, for some constant *c*.

Problems in P - $(O(n^3))$

Note. We are not claiming here right now any efficient algorithms. We just want to show membership in *P*.

Example 1

- $A = \{ \langle G
 angle \mid G ext{ is a connected undirected graph} \}$
- $\langle G
 angle = (1,2,3,4)((1,2),(2,3),(1,3),(1,4))$

- $M = "On input \langle G \rangle$:
 - 1. Select first node of G; mark it **(1 step)**
 - 2. Repeat following step until no new nodes are marked ($\leq n$ times)

- For each node v in G: mark v if incident to an edge where the other endpoint is already marked. (≤ n² edges)
- 3. Scan all nodes of G: determine whether or not they all are marked (n steps)
 - If they are: accept
 - Otherwise: reject."

Note. We do not have to worry whether this is a single tape Turing Machine or a Multi-Tape Turing Machine.

Example 2

PATH

- Input. A directed graph G = (V, A) and vertices $s, t \in V$.
- **Question**. Does there exist a directed path from *s* to *t* in *G*?
- We assume that |V| = n.

 $PATH = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph that has a directed path from} s \text{ to } t \}.$

 $PATH \in P$

- Observe that a brute-force algorithm for this problem is too slow:
 - Examine all potential paths in *G*, i.e., sequences of nodes from *V* of length at most *n*.
 - **Note**. If any directed path exists from *s* to *t*, then there is one of length at most *n*.
 - Check wether any potential path is a directed path from s to t.
 - But the number of such potential paths is roughly n^2 (exponential in number of nodes in *G*).
 - Brute-force algorithm uses exponential times.
- Idea. Polynomial time algorithm for *PATH*.
 - Use breadth-first search
 - Mark all nodes in *G* that are reachable from *s* by directed paths of length 1
 - Mark all nodes in G that are reachable from s by directed paths of length 2
 - Mark all nodes in *G* that are reachable from *s* by directed paths of length 3
 - Mark all nodes in *G* that are reachable from *s* by directed paths of length *n*
 - Check whether or not t was discovered.

Running Time

- Polynomial time algorithm / decider *M* for PATH:
 - M = "On input $\langle G, s, t \rangle$, where G is a directed graph with nodes s and t:
 - Place a mark on node s(O(1))
 - Repeat until no additional nodes are marked: (O(n))
 - Scan arcs of G: If arc (a, b) is found where a is marked and b is unmarked then mark b $(O(m) = O(n^2))$
 - If t is marked accept, else, reject" (O(1))

Running time is $O(n^3)$.

Class P

- *M* be a (deterministic) decider.
 - Running time or time complexity of M: function f : N → N, where f(n) is maximum number of steps that M uses on any input of length n.
 - If f(n) is the running time of M, we say that M runs in time f(n) and that M is an f(n)-time TM.
- $t: \mathbb{N} \longrightarrow \mathbb{R}^+$ be a function.
 - **Time complexity class** *TIME*(*t*(*n*)): collection of all languages decidable by an *O*(*t*(*n*))-time TM.
- t(n) be a function, $t(n) \ge n$.
 - Every t(n)-time multitape TM has equivalent $O(t^2(n))$ -time single-tape TM.
- *P*: class of languages that are decidable in polynomial time on a deterministic single-tape Turing machine.

Class NP

• N nondeterministic decider.

- Running time of N: function f : N → N, where f(n) is maximum number of steps that N uses on any branch of its computation on any input of length n.
- $\bullet \ \ t:\mathbb{N}\longrightarrow \mathbb{R}^+, t(n)\geq n.$
 - Every t(n)-time nondeterministic single-tape TM has an equivalent $2^{O(t(n))}$ -time deterministic single-tape TM.
- Let A be a language. A **verifier** for A is an algorithm V with...
 - $A = \{w \mid V \text{ accepts } \langle w, c \rangle \text{ for some string } c \}.$
- Verifier V uses **certificates** c to verify $w \in A$.

NP, class of problems solvable in **nondeterministic polynomial time**, is the class of languages that have polynomial time verifiers.

 $NTIME(t(n)) = \{L \mid L \text{ is a language decided by an } O(t(n)) \\ \text{-time nondeterministic Turing machine} \}$

$$NP = igcup_k NTIME(n^k)$$

Terminology

- Let V be a verifier...
 - Running time of V measured in terms of length of w ($\langle w, c \rangle$) only
 - a **polynomial-time verifier** runs in polynomial time in length of w.
- Language *A* is **polynomially verifiable** if it has a polynomial-time verifier *V*.
- **Note**. If *V* polynomial verifier *V* then certificate *c* has polynomial length in terms of length of *w*.

Example

Let *G* be a directed graph... A **Hamiltonian path** in *G* is a directed path that visits each node exactly once.

Where (S, A) -> (A, T) is a Hamiltonian Path.

HAMPATH:

- Input. Directed graph G = (V, A), vertices $s, t \in V$.
- **Question**. Does there exist a Hamiltonian path from s to t in G?

Language $HAMPATH = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph with a Hamiltonian path from } s \text{ to } t \}.$

Does *HAMPATH* have a polynomial verifier *V*?

- Certificate for *HAMPATH*?
 - To verify $\langle G, s, t \rangle \in HAMPATH$: certificate c must be Hamiltonian path from s to t.
- V takes as input (G, s, t) and c and tests whether c is a Hamiltonian path from s to t in G.

$HAMPATH \in NP$

Nondeterministic TM that decides *HAMPATH* in nondeterministic polynomial time:

- $N_1 =$ "On input $\langle G, s, t \rangle$, where G is a directed graph with nodes s and t
 - Write a list of n numbers p_1, \ldots, p_n , where n is the number of nodes in G
 - Each number is nondeterministically selected to be between 1 and *n* (Certificate)
 - Check for repetitions in list. If any are found, rejects.
 - Check whether $s = p_1$ and $t = p_n$. If either fail, reject.
 - For each *i* between 1 and *n* − 1, check whether (*p_i*, *p_{i+1}*) is an arc of *G*. If not, reject.
 - If all tests have been passed, accept."

The verifier is the last 4 points listed above. The verifier runs in polynomial time.

Theorem

A language *A* is in *NP* if and only if *A* is decided by some nondeterministic polynomial-time Turing machine.

Idea. We convert a polynomial time verifier V to an equivalent nondeterministic polynomial-time Turing machine N and vice versa.

- *N* simulates *V* by guessing the certificate.
- V simulates N by using accepting branch as certificate.

Proof. Converting a polynomial time verifier *V* to an equivalent nondeterministic polynomial-time Turing machine *N*:

- Let $A \in NP$ and show that A is decided by a nondeterministic polynomial-time TM N.
 - Let V be a polynomial time verifier for A that exists by definition of NP.
 - Assume that V is a TM that runs in time n^k and construct N as follows...
 - N = "On input w of length n: Nondeterministically select string c of length at most n^k .
 - Run V on input $\langle w, c
 angle$
 - If V accepts, accept; otherwise, reject".

Proof. Assume *A* is decided by polynomial-time nondeterministic TM *N* (Other Direction):

- Construct polynomial-time verifier V as follows...
 - V = "On input $\langle w, c \rangle$, where w and c are strings:
 - Simulate *N* on input *w*; each symbol of *c* describes nondeterministic choice made at each step
 - If this branch of N's computation accepts, accept; otherwise, reject".

Examples of Problems / Languages in NP

• PATH - note that we already know that PATH is also in P

- HAMPATH
- Clique: $CLIQUE = \{ \langle G, k \rangle \mid G \text{ is an undirected graph with } k\text{-clique} \}$
- Independent Set: $IS = \{ \langle G, k \rangle \mid G \$ is an undirected graph with an independent set of size at least $k \}$
- Vertex Cover: $VC = \{ \langle G, k \rangle \mid G$ is an undirected graph with a vertex cover set of size at least $k \}$
- Subset Sum: $SUBSET SUM = \{\langle S, t \rangle \mid S = \{x_1, \dots, x_k\}$, and for some $\{y_1, \dots, y_l\} \subseteq \{x_1, \dots, x_k\}$, we have $\Sigma_{y_i} = t\}$

The P VS NP Question

- We Know.
 - $P \subseteq NP$

$$NP\subseteq igcup_k TIME(2^{n^k})$$

• What about $NP \subseteq P$?

NP-Completeness

1970s: Stephen Cook (UofT) and Leonid Levin (MIT) discovered problems in NP where individual complexity is related to that of entire class.

If polynomial-time algorithm exists for any such problem: all problems in NP would be polynomial time solvable.

Problems called **NP-Complete**. NP-Completeness important for both theory and practice.

Satisfiability

First problem to be shown NP-complete. $SAT = \{ \langle \Phi \rangle \mid \Phi \text{ is a satisfiable Boolean formula} \}.$

Terminology

Boolean Variables. Variable that can take on the values TRUE and FALSE. Usually, represent TRUE by 1 and FALSE by 0.

Boolean Operations. AND, OR, NOT. Represented by symbols \land , \lor , and \neg .

Boolean Formulas. Expression involving Boolean variables and operators. $\phi = (\bar{x} \land y) \lor (x \land \bar{z}).$

Note. The over bar is shorthand for $\neg : \bar{x}$ means $\neg x$.

Boolean Operations and Formulas

- AND
 - $0 \wedge 0 = 0$
 - $0 \wedge 1 = 0$
 - $1 \wedge 0 = 0$
 - $1 \wedge 1 = 1$
- OR
 - $0 \lor 0 = 0$
 - $0 \lor 1 = 1$
 - $1 \lor 0 = 1$
 - $1 \lor 1 = 1$
- NOT
 - $\bar{0}=1$
 - $\overline{1}=0$

A Boolean formula is **satisfiable** if some assignment of 0's and 1's to the variables makes the formula evaluate to 1.

Formula ϕ is satisfiable because assignment x = 0, y = 1, and z = 0 makes ϕ evaluate to 1.

We say the assignment **satisfies** ϕ .

The **satisfiability problem (SAT)**: test whether or not a Boolean formula is satisfiable.

Previous Lecture

Lecture15

Next Lecture

Lecture17