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Complexity Relationships Between Different

Types of TMs

Theorem. Let  be a function, . Every -time multitape TM has an

equivalent  time single-tape TM.

Idea. On single-tape TM, simulate single step on multitape TM.

Show. Uses at most  steps.

Theorem. For every multitape Turing Machine there is an equivalent single-tape

Turing Machine.

Analyze running time single TM uses in this proof to simulate multitape TM.

More formally let  be multitape TM with  tapes.

Convert  into single-tape Turing Machine  with...

 .

and transition function  for  simulates each move of .

for each step of  moves from virtual tape to virtual tape. How

many steps for one scan?

First Scan. Search for all current head positions and determine

content of current cells on all virtual tapes.

Length of active position of tape: .

Second Scan. Update content of current cells and update head

positions, according to transition that  executing.

 for  many steps, Stakes 

t(n) t(n) ≥ n t(n)

O(t2(n))

O(t(n))

M = (Q, Σ, Γ, δ, q0, qaccept, qreject) k

M S = (Q, Σ, Γ′, δ′, q0, qaccept, qreject)

Γ′ = Γ ∪ {#} ∪ {#̇} ∪ {ȧ | a ∈ Γ, ȧ ∉ Γ}, #, #̇ ∉ Γ

δ′ S M

M : S

t(n) ∈ O(t(n))

M

⇒ t(n) O(t2(n))



If a virtual tape head moves right encountering #, make room on

virtual tape: all tape content starting at # is shifted by 1 cell to

the right and adds a blank for the #.

The first and second scan take .

Note. -time multitape TM. Assume .

Question. How do we talk about time complexity when the TM is a nondeterministic

decider?

Running Time / Time Complexity For

Nondeterministic Deciders

Definition. Let  be a nondeterministic decider. The running time or time

complexity of  is the function  where  is the maximum number of

steps that  uses on any branch of its computation on any input of length .

If  is the running time of  then we say:  runs in time  and  is an -

time nondeterministic TM.

Time Complexity Deciders VS Nondeterministic

Deciders

O(t(n))

t(n) t(n) ≥ n

N

N f : N ⟶ N f(n)

N n

f(n) N N f(n) N f(n)



Note. Running time of deciders is a model for the running time when running

algorithms on a classical computer.

Definition of running time for nondeterministic deciders. Not intended to correspond

to real-world computing device. Purely theoretical concepts for characterizing

complexity of important classes of computational problems.

Theorem

Let  be a function, . Then every -time nondeterministic single-tape TM

has an equivalent -time deterministic single-tape TM.

-time nondeterministic TM. Assume . Input length: . Total number of

leaves .

Note. .

Analysis of Simulation

Simulation in BFS manner...

first visit root

visit all nodes at depth  before any nodes at depth .

Tree size: number of nodes . number of leaves  number of nodes 

Time to travel from root down to a node: 

's running time: .

t(n) t(n) ≥ n t(n)

2O(t(n))

N : t(n) t(n) ≥ n n

≤ bt(n)

2c⋅t(n) = 2O(t(n))

d d + 1

< 2 ⇒ O(bt(n)))

O(t(n))

⇒ D O(t(n)) ⋅ bt(n) = O(t(n)) ⋅ 2O(t(n))

bt(n) = 2log2(bt(n)) = 2(log2b)t(n)

O(t(n)) ⋅ bt(n) = O(t(n)) ⋅ 2O(t(n))

= 0(2log2t(n) ⋅ 20(t(n)))

= 2O(t(n))



TM  has three tapes; conversion into single-tape TM.

Complexity Class 

i.e.,  is the class of languages that are decidable in polynomial time on a

deterministic single-tape TM.

: often considered that class of problems solvable - on a classical computer - in

practice.

Not entirely accurate but many problems in  indeed solvable in practice.

If a problem  is in  then there exists an -time algorithm for , for some

constant .

Problems in  - 

Note. We are not claiming here right now any efficient algorithms. We just want to

show membership in .

Example 1

 "On input :

�� Select first node of ; mark it (1 step)

�� Repeat following step until no new nodes are marked (  times)

D

O(2O(t(n)))2 = O(2O(2⋅t(n)))

= O(2O(t(n)))

P

P = ⋃
k

TIME(nk)

P

P

P

A P nc A

c

P (O(n3))

P

A = {⟨G⟩ | G is a connected undirected graph}

⟨G⟩ = (1, 2, 3, 4)((1, 2), (2, 3), (1, 3), (1, 4))

M = ⟨G⟩

G

≤ n



For each node  in : mark  if incident to an edge where the other

endpoint is already marked. (  edges)

�� Scan all nodes of : determine whether or not they all are marked (  steps)

If they are: accept

Otherwise: reject."

Note. We do not have to worry whether this is a single tape Turing Machine or a

Multi-Tape Turing Machine.

Example 2

Input. A directed graph  and vertices .

Question. Does there exist a directed path from  to  in ?

We assume that .

 .

v G v

≤ n2

G n

PATH

G = (V ,A) s, t ∈ V

s t G

|V | = n

PATH = {⟨G, s, t⟩ | G is a directed graph that has a directed path froms to t}

PATH ∈ P



Observe that a brute-force algorithm for this problem is too slow:

Examine all potential paths in , i.e., sequences of nodes from  of length

at most .

Note. If any directed path exists from  to , then there is one of

length at most .

Check wether any potential path is a directed path from  to .

But the number of such potential paths is roughly  (exponential in

number of nodes in ).

Brute-force algorithm uses exponential times.

Idea. Polynomial time algorithm for .

Use breadth-first search

Mark all nodes in  that are reachable from  by directed paths of length 1

Mark all nodes in  that are reachable from  by directed paths of length 2

Mark all nodes in  that are reachable from  by directed paths of length 3

Mark all nodes in  that are reachable from  by directed paths of length 

Check whether or not  was discovered.

G V

n

s t

n

s t

n2

G

PATH

G s

G s

G s

G s n

t



Running Time

Polynomial time algorithm / decider  for PATH:

 "On input , where  is a directed graph with nodes  and :

Place a mark on node  

Repeat until no additional nodes are marked: 

Scan arcs of : If arc  is found where  is marked and  is

unmarked then mark  

If  is marked accept, else, reject" 

Running time is .

Class 

 be a (deterministic) decider.

Running time or time complexity of : function , where  is

maximum number of steps that  uses on any input of length .

If  is the running time of , we say that  runs in time  and that 

 is an -time TM.

 be a function.

Time complexity class : collection of all languages decidable by

an -time TM.

 be a function, .

Every -time multitape TM has equivalent -time single-tape TM.

: class of languages that are decidable in polynomial time on a

deterministic single-tape Turing machine.

Class 

 nondeterministic decider.

M

M = ⟨G, s, t⟩ G s t

s (O(1))

(O(n))

G (a, b) a b

b (O(m) = O(n2))

t (O(1))

O(n3)

P

M

M f : N ⟶ N f(n)

M n

f(n) M M f(n)

M f(n)

t : N ⟶ R+

TIME(t(n))

O(t(n))

t(n) t(n) ≥ n

t(n) O(t2(n))

P

NP

N



Running time of : function , where  is maximum number of

steps that  uses on any branch of its computation on any input of length 

.

, .

Every -time nondeterministic single-tape TM has an equivalent -

time deterministic single-tape TM.

Let  be a language. A verifier for  is an algorithm  with...

.

Verifier  uses certificates  to verify .

, class of problems solvable in nondeterministic polynomial time, is the class of

languages that have polynomial time verifiers.

  

Terminology

Let  be a verifier...

Running time of  measured in terms of length of  ( ) only

a polynomial-time verifier runs in polynomial time in length of .

Language  is polynomially verifiable if it has a polynomial-time verifier .

Note. If  polynomial verifier  then certificate  has polynomial length in terms

of length of .

Example

Let  be a directed graph... A Hamiltonian path in  is a directed path that visits

each node exactly once.

N f : N ⟶ N f(n)

N

n

t : N ⟶ R
+ t(n) ≥ n

t(n) 2O(t(n))

A A V

A = {w | V  accepts ⟨w, c⟩ for some string c}

V c w ∈ A

NP

NTIME(t(n)) = {L | L is a language decided by an O(t(n))

-time nondeterministic Turing machine}

NP = ⋃
k

NTIME(nk)

V

V w ⟨w, c⟩

w

A V

V V c

w

G G



S

A

T

Where (S, A) -> (A, T) is a Hamiltonian Path.

:

Input. Directed graph , vertices .

Question. Does there exist a Hamiltonian path from  to  in ?

Language  .

Does  have a polynomial verifier ?

Certificate for ?

To verify : certificate  must be Hamiltonian path from 

 to .

 takes as input  and  and tests whether  is a Hamiltonian path from 

to  in .

Nondeterministic TM that decides  in nondeterministic polynomial time:

 "On input , where  is a directed graph with nodes  and 

Write a list of  numbers , where  is the number of nodes in 

Each number is nondeterministically selected to be between 1 and 

(Certificate)

Check for repetitions in list. If any are found, rejects.

Check whether  and . If either fail, reject.

For each  between 1 and , check whether  is an arc of . If not,

reject.

If all tests have been passed, accept."

The verifier is the last 4 points listed above. The verifier runs in polynomial time.

Theorem

HAMPATH

G = (V ,A) s, t ∈ V

s t G

HAMPATH = {⟨G, s, t⟩ | G is a directed graph with a Hamiltonian path from s to t}

HAMPATH V

HAMPATH

⟨G, s, t⟩ ∈ HAMPATH c

s t

V ⟨G, s, t⟩ c c s

t G

HAMPATH ∈ NP

HAMPATH

N1 = ⟨G, s, t⟩ G s t

n p1, . . . , pn n G

n

s = p1 t = pn

i n − 1 (pi, pi+1) G



A language  is in  if and only if  is decided by some nondeterministic

polynomial-time Turing machine.

Idea. We convert a polynomial time verifier  to an equivalent nondeterministic

polynomial-time Turing machine  and vice versa.

 simulates  by guessing the certificate.

 simulates  by using accepting branch as certificate.

Proof. Converting a polynomial time verifier  to an equivalent nondeterministic

polynomial-time Turing machine :

Let  and show that  is decided by a nondeterministic polynomial-time

TM .

Let  be a polynomial time verifier for  that exists by definition of .

Assume that  is a TM that runs in time  and construct  as follows...

 "On input  of length : Nondeterministically select string  of

length at most .

Run  on input 

If  accepts, accept; otherwise, reject".

Proof. Assume  is decided by polynomial-time nondeterministic TM  (Other

Direction):

Construct polynomial-time verifier  as follows...

 "On input , where  and  are strings:

Simulate  on input ; each symbol of  describes nondeterministic

choice made at each step

If this branch of 's computation accepts, accept; otherwise, reject".

Examples of Problems / Languages in 

PATH - note that we already know that PATH is also in P

A NP A

V

N

N V

V N

V

N

A ∈ NP A

N

V A NP

V nk N

N = w n c

nk

V ⟨w, c⟩

V

A N

V

V = ⟨w, c⟩ w c

N w c

N

NP



HAMPATH

Clique:  

Independent Set:  

Vertex Cover:  

Subset Sum:  

 

The P VS NP Question

We Know.

What about ?

NP-Completeness

1970s: Stephen Cook (UofT) and Leonid Levin (MIT) discovered problems in NP where

individual complexity is related to that of entire class.

If polynomial-time algorithm exists for any such problem: all problems in NP would

be polynomial time solvable.

Problems called NP-Complete. NP-Completeness important for both theory and

practice.

Satisfiability

First problem to be shown NP-complete.  .

Terminology

CLIQUE = {⟨G, k⟩ | G is an undirected graph with k-clique}

IS = {⟨G, k⟩ | G

is an undirected graph with an independent set of size at least k}

VC = {⟨G, k⟩ | G

is an undirected graph with a vertex cover set of size at least k}

SUBSET − SUM = {⟨S, t⟩ | S = {x1, . . . ,xk}

, and for some {y1, . . . , yl} ⊆ {x1, . . . ,xk} , we have Σyi = t}

P ⊆ NP

NP ⊆ ⋃
k

TIME(2nk

)

NP ⊆ P

SAT = {⟨Φ⟩ | Φ is a satisfiable Boolean formula}



Boolean Variables. Variable that can take on the values TRUE and FALSE. Usually,

represent TRUE by 1 and FALSE by 0.

Boolean Operations. AND, OR, NOT. Represented by symbols , and .

Boolean Formulas. Expression involving Boolean variables and operators. 

.

Note. The over bar is shorthand for  means .

Boolean Operations and Formulas

AND

OR

NOT

A Boolean formula is satisfiable if some assignment of 0's and 1's to the variables

makes the formula evaluate to 1.

Formula  is satisfiable because assignment , , and  makes  evaluate to

1.

We say the assignment satisfies .

The satisfiability problem (SAT): test whether or not a Boolean formula is

satisfiable.

Previous Lecture

Lecture15

∧, ∨ ┐

ϕ = (x̄ ∧ y) ∨ (x ∧ z̄)

┐ : x̄ ┐x

0 ∧ 0 = 0

0 ∧ 1 = 0

1 ∧ 0 = 0

1 ∧ 1 = 1

0 ∨ 0 = 0

0 ∨ 1 = 1

1 ∨ 0 = 1

1 ∨ 1 = 1

0̄ = 1

1̄ = 0

ϕ x = 0 y = 1 z = 0 ϕ

ϕ



Next Lecture

Lecture17


