
CSC 320 - Lecture 16

#time-complexity #running-time #nondeterministic-deciders #p #np #deterministic

#HAMPATH #satisfiable #boolean #np-complete #PATH #TM #turing-machines

#complexity-class

Complexity Relationships Between Different

Types of TMs

Theorem. Let be a function, . Every -time multitape TM has an

equivalent time single-tape TM.

Idea. On single-tape TM, simulate single step on multitape TM.

Show. Uses at most steps.

Theorem. For every multitape Turing Machine there is an equivalent single-tape

Turing Machine.

Analyze running time single TM uses in this proof to simulate multitape TM.

More formally let be multitape TM with tapes.

Convert into single-tape Turing Machine with...

 .

and transition function for simulates each move of .

for each step of moves from virtual tape to virtual tape. How

many steps for one scan?

First Scan. Search for all current head positions and determine

content of current cells on all virtual tapes.

Length of active position of tape: .

Second Scan. Update content of current cells and update head

positions, according to transition that executing.

 for many steps, Stakes

t(n) t(n) ≥ n t(n)

O(t2(n))

O(t(n))

M = (Q, Σ, Γ, δ, q0, qaccept, qreject) k

M S = (Q, Σ, Γ′, δ′, q0, qaccept, qreject)

Γ′ = Γ ∪ {#} ∪ {#̇} ∪ {ȧ | a ∈ Γ, ȧ ∉ Γ}, #, #̇ ∉ Γ

δ′ S M

M : S

t(n) ∈ O(t(n))

M

⇒ t(n) O(t2(n))

If a virtual tape head moves right encountering #, make room on

virtual tape: all tape content starting at # is shifted by 1 cell to

the right and adds a blank for the #.

The first and second scan take .

Note. -time multitape TM. Assume .

Question. How do we talk about time complexity when the TM is a nondeterministic

decider?

Running Time / Time Complexity For

Nondeterministic Deciders

Definition. Let be a nondeterministic decider. The running time or time

complexity of is the function where is the maximum number of

steps that uses on any branch of its computation on any input of length .

If is the running time of then we say: runs in time and is an -

time nondeterministic TM.

Time Complexity Deciders VS Nondeterministic

Deciders

O(t(n))

t(n) t(n) ≥ n

N

N f : N ⟶ N f(n)

N n

f(n) N N f(n) N f(n)

Note. Running time of deciders is a model for the running time when running

algorithms on a classical computer.

Definition of running time for nondeterministic deciders. Not intended to correspond

to real-world computing device. Purely theoretical concepts for characterizing

complexity of important classes of computational problems.

Theorem

Let be a function, . Then every -time nondeterministic single-tape TM

has an equivalent -time deterministic single-tape TM.

-time nondeterministic TM. Assume . Input length: . Total number of

leaves .

Note. .

Analysis of Simulation

Simulation in BFS manner...

first visit root

visit all nodes at depth before any nodes at depth .

Tree size: number of nodes . number of leaves number of nodes

Time to travel from root down to a node:

's running time: .

t(n) t(n) ≥ n t(n)

2O(t(n))

N : t(n) t(n) ≥ n n

≤ bt(n)

2c⋅t(n) = 2O(t(n))

d d + 1

< 2 ⇒ O(bt(n)))

O(t(n))

⇒ D O(t(n)) ⋅ bt(n) = O(t(n)) ⋅ 2O(t(n))

bt(n) = 2log2(bt(n)) = 2(log2b)t(n)

O(t(n)) ⋅ bt(n) = O(t(n)) ⋅ 2O(t(n))

= 0(2log2t(n) ⋅ 20(t(n)))

= 2O(t(n))

TM has three tapes; conversion into single-tape TM.

Complexity Class

i.e., is the class of languages that are decidable in polynomial time on a

deterministic single-tape TM.

: often considered that class of problems solvable - on a classical computer - in

practice.

Not entirely accurate but many problems in indeed solvable in practice.

If a problem is in then there exists an -time algorithm for , for some

constant .

Problems in -

Note. We are not claiming here right now any efficient algorithms. We just want to

show membership in .

Example 1

 "On input :

�� Select first node of ; mark it (1 step)

�� Repeat following step until no new nodes are marked (times)

D

O(2O(t(n)))2 = O(2O(2⋅t(n)))

= O(2O(t(n)))

P

P = ⋃
k

TIME(nk)

P

P

P

A P nc A

c

P (O(n3))

P

A = {⟨G⟩ | G is a connected undirected graph}

⟨G⟩ = (1, 2, 3, 4)((1, 2), (2, 3), (1, 3), (1, 4))

M = ⟨G⟩

G

≤ n

For each node in : mark if incident to an edge where the other

endpoint is already marked. (edges)

�� Scan all nodes of : determine whether or not they all are marked (steps)

If they are: accept

Otherwise: reject."

Note. We do not have to worry whether this is a single tape Turing Machine or a

Multi-Tape Turing Machine.

Example 2

Input. A directed graph and vertices .

Question. Does there exist a directed path from to in ?

We assume that .

 .

v G v

≤ n2

G n

PATH

G = (V ,A) s, t ∈ V

s t G

|V | = n

PATH = {⟨G, s, t⟩ | G is a directed graph that has a directed path froms to t}

PATH ∈ P

Observe that a brute-force algorithm for this problem is too slow:

Examine all potential paths in , i.e., sequences of nodes from of length

at most .

Note. If any directed path exists from to , then there is one of

length at most .

Check wether any potential path is a directed path from to .

But the number of such potential paths is roughly (exponential in

number of nodes in).

Brute-force algorithm uses exponential times.

Idea. Polynomial time algorithm for .

Use breadth-first search

Mark all nodes in that are reachable from by directed paths of length 1

Mark all nodes in that are reachable from by directed paths of length 2

Mark all nodes in that are reachable from by directed paths of length 3

Mark all nodes in that are reachable from by directed paths of length

Check whether or not was discovered.

G V

n

s t

n

s t

n2

G

PATH

G s

G s

G s

G s n

t

Running Time

Polynomial time algorithm / decider for PATH:

 "On input , where is a directed graph with nodes and :

Place a mark on node

Repeat until no additional nodes are marked:

Scan arcs of : If arc is found where is marked and is

unmarked then mark

If is marked accept, else, reject"

Running time is .

Class

 be a (deterministic) decider.

Running time or time complexity of : function , where is

maximum number of steps that uses on any input of length .

If is the running time of , we say that runs in time and that

 is an -time TM.

 be a function.

Time complexity class : collection of all languages decidable by

an -time TM.

 be a function, .

Every -time multitape TM has equivalent -time single-tape TM.

: class of languages that are decidable in polynomial time on a

deterministic single-tape Turing machine.

Class

 nondeterministic decider.

M

M = ⟨G, s, t⟩ G s t

s (O(1))

(O(n))

G (a, b) a b

b (O(m) = O(n2))

t (O(1))

O(n3)

P

M

M f : N ⟶ N f(n)

M n

f(n) M M f(n)

M f(n)

t : N ⟶ R+

TIME(t(n))

O(t(n))

t(n) t(n) ≥ n

t(n) O(t2(n))

P

NP

N

Running time of : function , where is maximum number of

steps that uses on any branch of its computation on any input of length

.

, .

Every -time nondeterministic single-tape TM has an equivalent -

time deterministic single-tape TM.

Let be a language. A verifier for is an algorithm with...

.

Verifier uses certificates to verify .

, class of problems solvable in nondeterministic polynomial time, is the class of

languages that have polynomial time verifiers.

Terminology

Let be a verifier...

Running time of measured in terms of length of () only

a polynomial-time verifier runs in polynomial time in length of .

Language is polynomially verifiable if it has a polynomial-time verifier .

Note. If polynomial verifier then certificate has polynomial length in terms

of length of .

Example

Let be a directed graph... A Hamiltonian path in is a directed path that visits

each node exactly once.

N f : N ⟶ N f(n)

N

n

t : N ⟶ R
+ t(n) ≥ n

t(n) 2O(t(n))

A A V

A = {w | V accepts ⟨w, c⟩ for some string c}

V c w ∈ A

NP

NTIME(t(n)) = {L | L is a language decided by an O(t(n))

-time nondeterministic Turing machine}

NP = ⋃
k

NTIME(nk)

V

V w ⟨w, c⟩

w

A V

V V c

w

G G

S

A

T

Where (S, A) -> (A, T) is a Hamiltonian Path.

:

Input. Directed graph , vertices .

Question. Does there exist a Hamiltonian path from to in ?

Language .

Does have a polynomial verifier ?

Certificate for ?

To verify : certificate must be Hamiltonian path from

 to .

 takes as input and and tests whether is a Hamiltonian path from

to in .

Nondeterministic TM that decides in nondeterministic polynomial time:

 "On input , where is a directed graph with nodes and

Write a list of numbers , where is the number of nodes in

Each number is nondeterministically selected to be between 1 and

(Certificate)

Check for repetitions in list. If any are found, rejects.

Check whether and . If either fail, reject.

For each between 1 and , check whether is an arc of . If not,

reject.

If all tests have been passed, accept."

The verifier is the last 4 points listed above. The verifier runs in polynomial time.

Theorem

HAMPATH

G = (V ,A) s, t ∈ V

s t G

HAMPATH = {⟨G, s, t⟩ | G is a directed graph with a Hamiltonian path from s to t}

HAMPATH V

HAMPATH

⟨G, s, t⟩ ∈ HAMPATH c

s t

V ⟨G, s, t⟩ c c s

t G

HAMPATH ∈ NP

HAMPATH

N1 = ⟨G, s, t⟩ G s t

n p1, . . . , pn n G

n

s = p1 t = pn

i n − 1 (pi, pi+1) G

A language is in if and only if is decided by some nondeterministic

polynomial-time Turing machine.

Idea. We convert a polynomial time verifier to an equivalent nondeterministic

polynomial-time Turing machine and vice versa.

 simulates by guessing the certificate.

 simulates by using accepting branch as certificate.

Proof. Converting a polynomial time verifier to an equivalent nondeterministic

polynomial-time Turing machine :

Let and show that is decided by a nondeterministic polynomial-time

TM .

Let be a polynomial time verifier for that exists by definition of .

Assume that is a TM that runs in time and construct as follows...

 "On input of length : Nondeterministically select string of

length at most .

Run on input

If accepts, accept; otherwise, reject".

Proof. Assume is decided by polynomial-time nondeterministic TM (Other

Direction):

Construct polynomial-time verifier as follows...

 "On input , where and are strings:

Simulate on input ; each symbol of describes nondeterministic

choice made at each step

If this branch of 's computation accepts, accept; otherwise, reject".

Examples of Problems / Languages in

PATH - note that we already know that PATH is also in P

A NP A

V

N

N V

V N

V

N

A ∈ NP A

N

V A NP

V nk N

N = w n c

nk

V ⟨w, c⟩

V

A N

V

V = ⟨w, c⟩ w c

N w c

N

NP

HAMPATH

Clique:

Independent Set:

Vertex Cover:

Subset Sum:

The P VS NP Question

We Know.

What about ?

NP-Completeness

1970s: Stephen Cook (UofT) and Leonid Levin (MIT) discovered problems in NP where

individual complexity is related to that of entire class.

If polynomial-time algorithm exists for any such problem: all problems in NP would

be polynomial time solvable.

Problems called NP-Complete. NP-Completeness important for both theory and

practice.

Satisfiability

First problem to be shown NP-complete. .

Terminology

CLIQUE = {⟨G, k⟩ | G is an undirected graph with k-clique}

IS = {⟨G, k⟩ | G

is an undirected graph with an independent set of size at least k}

VC = {⟨G, k⟩ | G

is an undirected graph with a vertex cover set of size at least k}

SUBSET − SUM = {⟨S, t⟩ | S = {x1, . . . ,xk}

, and for some {y1, . . . , yl} ⊆ {x1, . . . ,xk} , we have Σyi = t}

P ⊆ NP

NP ⊆ ⋃
k

TIME(2nk

)

NP ⊆ P

SAT = {⟨Φ⟩ | Φ is a satisfiable Boolean formula}

Boolean Variables. Variable that can take on the values TRUE and FALSE. Usually,

represent TRUE by 1 and FALSE by 0.

Boolean Operations. AND, OR, NOT. Represented by symbols , and .

Boolean Formulas. Expression involving Boolean variables and operators.

.

Note. The over bar is shorthand for means .

Boolean Operations and Formulas

AND

OR

NOT

A Boolean formula is satisfiable if some assignment of 0's and 1's to the variables

makes the formula evaluate to 1.

Formula is satisfiable because assignment , , and makes evaluate to

1.

We say the assignment satisfies .

The satisfiability problem (SAT): test whether or not a Boolean formula is

satisfiable.

Previous Lecture

Lecture15

∧, ∨ ┐

ϕ = (x̄ ∧ y) ∨ (x ∧ z̄)

┐ : x̄ ┐x

0 ∧ 0 = 0

0 ∧ 1 = 0

1 ∧ 0 = 0

1 ∧ 1 = 1

0 ∨ 0 = 0

0 ∨ 1 = 1

1 ∨ 0 = 1

1 ∨ 1 = 1

0̄ = 1

1̄ = 0

ϕ x = 0 y = 1 z = 0 ϕ

ϕ

Next Lecture

Lecture17

