
CSC 320 - Lecture 15

#church-turing-thesis #undecidable #undecidability #languages #co-turing-recognizable #turing-

machines #computable-functions #reduction

#undecidable-languages #mapping-reducibility #time-complexity

Church-Turing Thesis

Algorithms = Deciders

Algorithms. Finite number of unambiguous instructions (each instruction is of finite

length). Produces the desired result in a finite number of steps.

Deciders. Turing machine that halts on any input (and accepts or rejects).

A problem can be solved following an algorithm (while ignoring resource limitations)

if and only if it is computable by a Turing machine.

Another Undecidable Language

Proof via reduction from . Prove that is undecidable.

Proof. Assume is decidable; let be a decider for .

To achieve a contradiction, design decider for that uses as a subroutine.

Recall. . Therefore, takes as input

.

Question. How can help to decide if ?

Proof. Decider for takes as input .

For each we design an input for subroutine that accepts only if

accepts and accepts the empty language otherwise.

Note. We are doing some pre-processing. This is why we have the extra step.

 "On input

ETM = {⟨M⟩ | M is a TM and L(M) = ∅}

ATM ETM

ETM R ETM

S ATM R

ATM = {⟨M⟩ | M is a TM and accepts input string w} S

⟨M, w⟩

R ⟨M, v⟩ ∈ ATM

S ATM ⟨M, w⟩

⟨M, w⟩ ⟨M ′
w⟩ R w M

w

M ′
w = x

If then rejects

If then run on input and accept if does"

We are now ready to design .

 "On input

Construct description of and run on input .

If accepts then reject

Id rejects then accept"

Question. Is a decider for ?

.

Show. If then accepts, else rejects.

�� Let . Then , on , rejects since . Therefore accepts.

�� Let . Then , on , accepts since . Therefore rejects.

We Know

 and are both undecidable.

 and are both Turing-Recognizable

What about a concrete language that is not Turing-Recognizable?

Are There Languages That Are Not Turing-

Recognizable?

Definition. A language is co-Turing-Recognizable if it is the complement of a

Turing-Recognizable language.

Theorem. A language is decidable if and only if is Turing-Recognizable and co-

Turing-Recognizable.

Proof. We show..

�� decidable 's complement is decidable and are both Turing-

Recognizable.

�� and are both Turing-Recognizable decidable.

x ≠ w

x = w M w M

S

S = ⟨M, w⟩

M ′
w R ⟨M ′

w⟩

R

R

S ATM

Note. Missing class notes from drawing board

⟨M, w⟩ ∈ ATM S S

⟨M, w⟩ ∈ ATM R ⟨M ′
w⟩ L(M ′

w) ≠ ∅ S

⟨M, w⟩ ∉ ATM R ⟨M ′
w⟩ L(M ′

w) = ∅ S

ATM HALTTM

ATM HALTTM

A A

A ⇒ A Ā ⇒ A Ā

A Ā ⇒ A

�� decidable

Show. 's complement is decidable.

Note. . And is a decider.

Let be a decider for language .

We design TM "On input simulate on input .

If accepts then reject

If rejects then accept".

�� and are both Turing-Recognizable

Show. is decidable.

Let be recognizer for and be a recognizer for . The following Turing Machine

 is a decider for . And is a decider since either ir accepts .

 "On input run and simultaneously.

If accepts then accept

If accepts then reject".

A Language That Is Not Turing-Recognizable

Theorem. The complement of , , is not Turing-Recognizable.

Proof. We know: is Turing-Recognizable. Assume is Turing-Recognizable.

Then is decidable.

CONTRADICTION! is undecidable.

Computable Functions

We know what decidable languages are. Often, we talk about computing functions.

What is a computable function?

Definition. Let . is called computable function if some TM exists,

with for input , halts with just on its tape.

Mapping Reducibility

A

A Ā

w ∈ A ⇔ w ∉ Ā M

DA A

M = w DA w

DA

DA

A Ā

A

MA A C Ā

M A M MA C w

M = w MA C

MA

C

ATM
¯ATM

ATM
¯ATM

ATM

ATM

Note. Missing class notes from drawing board

f : Σ∗ ⟶ Σ∗ f M

w M f(w)

Definition. Language is mapping reducible to language , or , if there is a

computable function , where for every .

Function is called reduction from to .

Theorem. If and is decidable then is decidable.

Proof. Let be a decider for and let be a reduction from to .

We build decider for .

 "On input :

Compute

Run on input

Output whatever outputs".

Revisiting The Reduction Proofs...

 Is Mapping Reducibility To

Show. There is a function with .

We design a TM that computes .

 "On input construct description of TM .

 "On Input run on

If accepts then accept

If rejects then enter a loop"

A B A ≤m B

f : Σ∗ ⟶ Σ∗ w : w ∈ A ⇔ f(w) ∈ B

f A B

A ≤m B B A

M B f A B

N A

N = w

f(w)

M f(w)

M

HALTTM ATM

f : Σ∗ ⟶ Σ∗ ⟨M, w⟩ ∈ ATM ⇔ f(⟨M, w⟩) ∈ HALTTM

F f

F = ⟨M, w⟩ M ′

M ′ = x M x

M

M

Output ".

Time Complexity

From now on: decidable problems.

Running time/time complexity of Turing Machine

Asymptotic notation (Big Oh, etc.) applies

Note. If you program something that has an infinite loop then it is not an algorithm.

It is something else.

Running Time / Time Complexity

Definition. Let be a (deterministic) decider. The running time or time

complexity of is age function where is the maximum number of

steps that uses on any input of length .

If is the running time of then we say: runs in time and is an -

time TM.

Note. doesn't have to be exact, it can be an upper bound.

Time Complexity Class

Let be a function. Time Complexity Class is the collection of

all languages decidable by an -time TM.

Up Next

What do we know about time complexity when...

Comparing multi-tape TMs to single-tape TMs.

Comparing nondeterministic TMs to deterministic TMs.

Previous Lecture

Lecture14

Next Lecture

⟨M ′, w⟩

TIME(t(n))

M

M f : N⟶ N f(n)

M n

f(n) M M f(n) M f(n)

f(n)

t : N⟶ R
+ TIME(t(n))

O(t(n))

Lecture16

