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Church-Turing Thesis

Algorithms = Deciders

Algorithms. Finite number of unambiguous instructions (each instruction is of finite

length). Produces the desired result in a finite number of steps.

Deciders. Turing machine that halts on any input (and accepts or rejects).

A problem can be solved following an algorithm (while ignoring resource limitations)

if and only if it is computable by a Turing machine.

Another Undecidable Language

Proof via reduction from . Prove that  is undecidable.

Proof. Assume  is decidable; let  be a decider for .

To achieve a contradiction, design decider  for  that uses  as a subroutine.

Recall. . Therefore,  takes as input 

.

Question. How can  help to decide if ?

Proof. Decider  for  takes as input .

For each  we design an input  for subroutine  that accepts only  if 

accepts  and accepts the empty language otherwise.

Note. We are doing some pre-processing. This is why we have the extra step.

 "On input 

ETM = {⟨M⟩ | M  is a TM  and L(M) = ∅}

ATM ETM

ETM R ETM

S ATM R

ATM = {⟨M⟩ | M  is a TM  and accepts input string w} S

⟨M, w⟩

R ⟨M, v⟩ ∈ ATM

S ATM ⟨M, w⟩

⟨M, w⟩ ⟨M ′
w⟩ R w M

w

M ′
w = x



If  then rejects

If  then run  on input  and accept if  does"

We are now ready to design .

 "On input 

Construct description of  and run  on input .

If  accepts then reject

Id  rejects then accept"

Question. Is  a decider for ?

.

Show. If  then  accepts, else  rejects.

�� Let . Then , on , rejects since . Therefore  accepts.

�� Let . Then , on , accepts since . Therefore  rejects.

We Know

 and  are both undecidable.

 and  are both Turing-Recognizable

What about a concrete language that is not Turing-Recognizable?

Are There Languages That Are Not Turing-

Recognizable?

Definition. A language is co-Turing-Recognizable if it is the complement of a

Turing-Recognizable language.

Theorem. A language  is decidable if and only if  is Turing-Recognizable and co-

Turing-Recognizable.

Proof. We show..

��  decidable  's complement  is decidable   and  are both Turing-

Recognizable.

��  and  are both Turing-Recognizable   decidable.

x ≠ w

x = w M w M
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⟨M, w⟩ ∈ ATM S S

⟨M, w⟩ ∈ ATM R ⟨M ′
w⟩ L(M ′

w) ≠ ∅ S

⟨M, w⟩ ∉ ATM R ⟨M ′
w⟩ L(M ′

w) = ∅ S
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��  decidable

Show. 's complement  is decidable.

Note. . And  is a decider.

Let  be a decider for language .

We design TM  "On input  simulate  on input .

If  accepts then reject

If  rejects then accept".

��  and  are both Turing-Recognizable

Show.  is decidable.

Let  be recognizer for  and  be a recognizer for . The following Turing Machine

 is a decider for . And  is a decider since either  ir  accepts .

 "On input  run  and  simultaneously.

If  accepts then accept

If  accepts then reject".

A Language That Is Not Turing-Recognizable

Theorem. The complement of , , is not Turing-Recognizable.

Proof. We know:  is Turing-Recognizable. Assume  is Turing-Recognizable.

Then  is decidable.

CONTRADICTION!  is undecidable.

Computable Functions

We know what decidable languages are. Often, we talk about computing functions.

What is a computable function?

Definition. Let .  is called computable function if some TM  exists,

with for input ,  halts with just  on its tape.

Mapping Reducibility
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f : Σ∗ ⟶ Σ∗ f M

w M f(w)



Definition. Language  is mapping reducible to language , or , if there is a

computable function , where for every .

Function  is called reduction from  to .

Theorem. If  and  is decidable then  is decidable.

Proof. Let  be a decider for  and let  be a reduction from  to .

We build decider  for .

 "On input :

Compute 

Run  on input 

Output whatever  outputs".

Revisiting The Reduction Proofs...

 Is Mapping Reducibility To 

Show. There is a function  with .

We design a TM  that computes .

 "On input  construct description of TM .

 "On Input  run  on 

If  accepts then accept

If  rejects then enter a loop"

A B A ≤m B

f : Σ∗ ⟶ Σ∗ w : w ∈ A ⇔ f(w) ∈ B

f A B

A ≤m B B A

M B f A B

N A

N = w

f(w)

M f(w)

M

HALTTM ATM

f : Σ∗ ⟶ Σ∗ ⟨M, w⟩ ∈ ATM ⇔ f(⟨M, w⟩) ∈ HALTTM

F f

F = ⟨M, w⟩ M ′

M ′ = x M x
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Output ".

Time Complexity

From now on: decidable problems.

Running time/time complexity of Turing Machine

Asymptotic notation (Big Oh, etc.) applies

Note. If you program something that has an infinite loop then it is not an algorithm.

It is something else.

Running Time / Time Complexity

Definition. Let  be a (deterministic) decider. The running time or time

complexity of  is age function  where  is the maximum number of

steps that  uses on any input of length .

If  is the running time of  then we say:  runs in time  and  is an -

time TM.

Note.  doesn't have to be exact, it can be an upper bound.

Time Complexity Class

Let  be a function. Time Complexity Class  is the collection of

all languages decidable by an -time TM.

Up Next

What do we know about time complexity when...

Comparing multi-tape TMs to single-tape TMs.

Comparing nondeterministic TMs to deterministic TMs.
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