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We Know

A language  is Turing-Recognizable 

if and only if 

some (Single-Tape) Turing Machine recognizes  

if and only if 

some Multitape Turing Machine recognizes  

if and only if 

some Enumerator outputs  

if and only if 

some Nondeterministic Turing Machine outputs 

Decidable Problems / Languages

Show.   is decidable.

TM  that decides . Use high-level description that describes .

 = "On input , where  is a DFA and  is a string:

Simulate  on input 

If simulation of  ends in accept state: accept

If simulation of  ends in non-accepting state: reject."

Why does  work / how can  be realized?

Input for : 

Verify input for DFA and 

At any step of simulation:  keeps track of 's current state & position in ...

 writes information on tape

Note. TM  is a decider.
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ADFA = {⟨B, w⟩ | B is a DFA that accepts input string w}
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TM  always halts since the simulation of DFA  halts. And because it is a well

defined DFA and we expect it to be proper (otherwise we would have problems).

Show.   is decidable.

TM  that decides . Use high-level description that describes .

 = "On input , where  is a NFA and  is a string:

Convert NFA  to an equivalent DFA 

Run TM  on input 

If  accepts, accept; otherwise, reject."

Note.  is a decider.

Note. This is not cumbersome because we are using the theorem and algorithms

previously seen in this course.

Are All Languages Decidable?

Recall. How large is the set of all languages?

The set of all languages over  equals .  is countable infinite and therefore 

 is uncountably infinite. (The set of all languages in uncountable infinite).

Question. How many Turing Machines are there?

The Set of All Turing Machines is Countable

Turing Machines can be encoded over some alphabet . Each TM  has encoding 

. Enumerate all strings in , omitting strings that don't encode any TM.

There Exist Languages That Cannot Be Decided

Because there are more languages (the set of all languages is uncountable infinite)

than Turing Machines (the set of Turing Machines is countable).

Thus, there are more languages than Turing Machines.

Languages
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ANFA = {⟨B, w⟩ | B is a NFA that accepts input string w}
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The set of all languages is uncountable, and everything within and including Turing-

Recognizable is countable.

Note. There exist languages that are not Turing-Recognizable. Thus, there are also

languages that are not Turing-Decidable, etc.

The Halting Problem

Does there exist a decider / an algorithm that can check any code / program with any

input and determine if it halts?

 .

Note. It would be cool if there was a universal checking mechanism, but that doesn't

exist.

Methods to Prove Undecidability (for Halting

Problem)

Diagonalisation (seen in Lecture 02).

Reduction

We will use  to help us prove undecidability of Halting problem.

HALTTM = {⟨M, w⟩ | M is a TM and M  halts on input w}

ATM = {⟨M, w⟩ | M  is a TM  and accepts input string w}

ATM



Question. Is  decidable? NO!

An Undecidable Language

Show.  is Turing-Recognizable and is undecidable.

 is Turing Recognizable

 "On input , where  is TM and  is string:

Simulate  on input ...

If  enters accept state, accept

If  ever enters reject state, reject."

Note.  is called universal TM.  is no decider.  loops whenever  loops.

 is Undecidable

Proof by contradiction, using diagonalisation: Assume  is decidable.

Assume  is a decider for . On input , where  is TM and  is string:

 halts and accepts if  accepts 

 halts and rejects if  fails to accept 

That is  is a TM with...

Construct TM  with  as a subroutine...

 "On input , where  is TM

Run  on input 

If  accepts: reject

If  rejects: accept"

Which is a contradiction! So,  is undecidable.

ATM

ATM = {⟨M, w⟩ | M  is a TM  and accepts input string w}
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H ATM ⟨M, w⟩ M w

H M w
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H(⟨M, w⟩) = {
accept if M  accepts w

reject if M  does not accept w

D H

D = ⟨M⟩ M

H ⟨M, ⟨M⟩⟩

H

H

D(⟨M⟩) = {
accept if M  does not accepts ⟨M⟩

reject if M  accepts ⟨M⟩

D(⟨D⟩) = {
accept if D does not accepts ⟨D⟩

reject if D accepts ⟨D⟩

ATM



 is Undecidable (Reconsidered)

accept accept

accept

accept

??

Note. We go in a diagonal to get . And we can't do the last diagonalisation. So we

obtain a contradiction.

On input  for TM ...

On input : (  on input )

and string 

 accepts if  accepts 

 accepts if  accepts 

 rejects if  does not accept 

 rejects if  does not accept 

 does the opposite of , that is:

 accept if  reject

 reject if  accept

That is,  accepts when given as input its own encoding if and only if  rejects

when given as inputs its own encoding. Which is a contradiction!

What Happened?!? We Have Shown...

Assuming that  is decidable

We built decider  that uses , the decider for , as subroutine

 on input  simply does the opposite of  on input 

But:  on input  cannot return any of accept or reject

Therefore decider  does not exists, which means that

Decider  does not exists which meant that

 is undecidable.

ATM

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ ⟨D⟩

M1 reject reject

M2 reject reject reject

M3 reject reject reject

M4 reject reject reject reject

D reject accept reject accept
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D D
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The Halting Problem (Again)

 .

We show that  is undecidable via the method of reduction (and the

knowledge that  is undecidable).

Reduction

Given x, create input x' to B

Answer x for A based on the answer for B when given x'

Given: specific input x to A Solve B for x'

Solve B for x' Done

ReductionProblem A Problem B

Note.  is used as a subroutine to solve .

Questions. How can I solve ? Maybe what we know about  can help? Just figure

out how to solve  using !

Definition. Reduction is a way of converting a problem, , to another problem, ,

such that a solution to  can be used to solve .

If  reduces to  (or  is reducible to ), we can use a solution to  to solve .

Note. That reducibility says nothing about solving  or  alone, but only about

solvability of  in presence of a solution to .

Therefore, If  is reducible to  then...

a solution to  yields a solution to .

Proving Undecidability

If  is reducible to  and  is decidable then  is decidable.

If  is undecidable and  is reducible to  then  is undecidable.

HALTTM = {⟨M, w⟩ | M is a TM and M  halts on input w}

HALTTM

ATM

B A

A B

A B

A B

B A

A B A B B A

A B

A B

A B

 solving A cannot be harder than solving B

B A

A B B A

A ⟶ B

Decidable ⇐ Decidable

A A B B



A method for proving that a problem is undecidable is to show that some other

problem, which is already known to be undecidable, reduces to it.

Ex.

BUT. This is a contradiction because we know  is undecidable.

Reduction to Prove Undecidability

Problem  is known to be undecidable...

ReductionProblem A Problem B

Reduction comes in form of a decider / algorithm.

Questions. How can I show  is undecidable? Maybe we use that  is undecidable...

Yes! Show that if  is decidable then so is ! Use deciding  as subroutine (ex.

function) to decide . This shows that  is at least as difficult as . And therefore 

must be undecidable also!

  is

Undecidable

Show.  is reducible to .

Assume.  is decidable.

Goal. Show then  is decidable also (which we know is not true). (Always use a

contradiction when we do this kind of reduction).

Since  is decidable there is a decider  for .

The Reduction.

A ⟶ B

Undecidable ⇒ Undecidable

ATM ⟶ HALTHTM

Decidable ⇐ Decidable

ATM

A

B A

B A B

A B A B

HALTTM = {⟨M, w⟩ | M is a TM and M  halts on input w}

ATM HALTTM

HALTTM

ATM

HALTTM R HALTTM



We construct decider  for . Given input ...

 must accept if  accepts  and

 must reject if  loops for  or rejects .

Show  is Undecidable

We can simulate  on ...

If  accepts or rejects,  does the same.

BUT. What if  is stuck in a loop?

Idea. Use decider  for  to test whether or not  halts on .

If  reports that  does not halt on  then  and therefore  must

reject.

If  reports that  halts on , simulate  and if  accepts or rejects,  does the

same.

Therefore, If decider  for  exists, then we also can decide .

But  is undecidable...

Contradiction

Therefore  does not exist
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Therefore  is undecidable

Undecidable Language

Previous Lecture

Lecture13

Next Lecture

Lecture15
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