
CSC 320 - Lecture 14

#decider #decidable #existence #undecidable #undecidability #halting-problem #reduction

#decidable-languages #undecidable-languages #countability #languages

We Know

A language is Turing-Recognizable

if and only if

some (Single-Tape) Turing Machine recognizes

if and only if

some Multitape Turing Machine recognizes

if and only if

some Enumerator outputs

if and only if

some Nondeterministic Turing Machine outputs

Decidable Problems / Languages

Show. is decidable.

TM that decides . Use high-level description that describes .

 = "On input , where is a DFA and is a string:

Simulate on input

If simulation of ends in accept state: accept

If simulation of ends in non-accepting state: reject."

Why does work / how can be realized?

Input for :

Verify input for DFA and

At any step of simulation: keeps track of 's current state & position in ...

 writes information on tape

Note. TM is a decider.

L

L

L

L

L

ADFA = {⟨B, w⟩ | B is a DFA that accepts input string w}

M ADFA M

M ⟨B, w⟩ B w

B w

B

B

M M

M Q, Σ, δ, q0, F , w

w

M B w

M

M

TM always halts since the simulation of DFA halts. And because it is a well

defined DFA and we expect it to be proper (otherwise we would have problems).

Show. is decidable.

TM that decides . Use high-level description that describes .

 = "On input , where is a NFA and is a string:

Convert NFA to an equivalent DFA

Run TM on input

If accepts, accept; otherwise, reject."

Note. is a decider.

Note. This is not cumbersome because we are using the theorem and algorithms

previously seen in this course.

Are All Languages Decidable?

Recall. How large is the set of all languages?

The set of all languages over equals . is countable infinite and therefore

 is uncountably infinite. (The set of all languages in uncountable infinite).

Question. How many Turing Machines are there?

The Set of All Turing Machines is Countable

Turing Machines can be encoded over some alphabet . Each TM has encoding

. Enumerate all strings in , omitting strings that don't encode any TM.

There Exist Languages That Cannot Be Decided

Because there are more languages (the set of all languages is uncountable infinite)

than Turing Machines (the set of Turing Machines is countable).

Thus, there are more languages than Turing Machines.

Languages

M B

ANFA = {⟨B, w⟩ | B is a NFA that accepts input string w}

N ANFA N

N ⟨B, w⟩ B w

B C

M ⟨C, w⟩

M

N

Σ P(Σ∗) Σ∗

P(Σ ∗)

Σ M ⟨M⟩

Σ∗

The set of all languages is uncountable, and everything within and including Turing-

Recognizable is countable.

Note. There exist languages that are not Turing-Recognizable. Thus, there are also

languages that are not Turing-Decidable, etc.

The Halting Problem

Does there exist a decider / an algorithm that can check any code / program with any

input and determine if it halts?

 .

Note. It would be cool if there was a universal checking mechanism, but that doesn't

exist.

Methods to Prove Undecidability (for Halting

Problem)

Diagonalisation (seen in Lecture 02).

Reduction

We will use to help us prove undecidability of Halting problem.

HALTTM = {⟨M, w⟩ | M is a TM and M halts on input w}

ATM = {⟨M, w⟩ | M is a TM and accepts input string w}

ATM

Question. Is decidable? NO!

An Undecidable Language

Show. is Turing-Recognizable and is undecidable.

 is Turing Recognizable

 "On input , where is TM and is string:

Simulate on input ...

If enters accept state, accept

If ever enters reject state, reject."

Note. is called universal TM. is no decider. loops whenever loops.

 is Undecidable

Proof by contradiction, using diagonalisation: Assume is decidable.

Assume is a decider for . On input , where is TM and is string:

 halts and accepts if accepts

 halts and rejects if fails to accept

That is is a TM with...

Construct TM with as a subroutine...

 "On input , where is TM

Run on input

If accepts: reject

If rejects: accept"

Which is a contradiction! So, is undecidable.

ATM

ATM = {⟨M, w⟩ | M is a TM and accepts input string w}

ATM

ATM

U = ⟨M, w⟩ M w

M w

M

M

U U U M

ATM

ATM

H ATM ⟨M, w⟩ M w

H M w

H M w

H

H(⟨M, w⟩) = {
accept if M accepts w

reject if M does not accept w

D H

D = ⟨M⟩ M

H ⟨M, ⟨M⟩⟩

H

H

D(⟨M⟩) = {
accept if M does not accepts ⟨M⟩

reject if M accepts ⟨M⟩

D(⟨D⟩) = {
accept if D does not accepts ⟨D⟩

reject if D accepts ⟨D⟩

ATM

 is Undecidable (Reconsidered)

accept accept

accept

accept

??

Note. We go in a diagonal to get . And we can't do the last diagonalisation. So we

obtain a contradiction.

On input for TM ...

On input : (on input)

and string

 accepts if accepts

 accepts if accepts

 rejects if does not accept

 rejects if does not accept

 does the opposite of , that is:

 accept if reject

 reject if accept

That is, accepts when given as input its own encoding if and only if rejects

when given as inputs its own encoding. Which is a contradiction!

What Happened?!? We Have Shown...

Assuming that is decidable

We built decider that uses , the decider for , as subroutine

 on input simply does the opposite of on input

But: on input cannot return any of accept or reject

Therefore decider does not exists, which means that

Decider does not exists which meant that

 is undecidable.

ATM

⟨M1⟩ ⟨M2⟩ ⟨M3⟩ ⟨M4⟩ ⟨D⟩

M1 reject reject

M2 reject reject reject

M3 reject reject reject

M4 reject reject reject reject

D reject accept reject accept

D

⟨M, w⟩ M

⟨D, ⟨D⟩⟩ D ⟨D⟩

w

H D ⟨D⟩

H M w

H D ⟨D⟩

H M w

D H

D(⟨D⟩) = H(⟨D, ⟨D⟩⟩) =

D(⟨D⟩) = H(⟨D, ⟨D⟩⟩) =

D D

ATM

D H ATM

D ⟨M⟩ H ⟨M, ⟨M⟩⟩

D ⟨D⟩

D

H

ATM

The Halting Problem (Again)

 .

We show that is undecidable via the method of reduction (and the

knowledge that is undecidable).

Reduction

Given x, create input x' to B

Answer x for A based on the answer for B when given x'

Given: specific input x to A Solve B for x'

Solve B for x' Done

ReductionProblem A Problem B

Note. is used as a subroutine to solve .

Questions. How can I solve ? Maybe what we know about can help? Just figure

out how to solve using !

Definition. Reduction is a way of converting a problem, , to another problem, ,

such that a solution to can be used to solve .

If reduces to (or is reducible to), we can use a solution to to solve .

Note. That reducibility says nothing about solving or alone, but only about

solvability of in presence of a solution to .

Therefore, If is reducible to then...

a solution to yields a solution to .

Proving Undecidability

If is reducible to and is decidable then is decidable.

If is undecidable and is reducible to then is undecidable.

HALTTM = {⟨M, w⟩ | M is a TM and M halts on input w}

HALTTM

ATM

B A

A B

A B

A B

B A

A B A B B A

A B

A B

A B

 solving A cannot be harder than solving B

B A

A B B A

A ⟶ B

Decidable ⇐ Decidable

A A B B

A method for proving that a problem is undecidable is to show that some other

problem, which is already known to be undecidable, reduces to it.

Ex.

BUT. This is a contradiction because we know is undecidable.

Reduction to Prove Undecidability

Problem is known to be undecidable...

ReductionProblem A Problem B

Reduction comes in form of a decider / algorithm.

Questions. How can I show is undecidable? Maybe we use that is undecidable...

Yes! Show that if is decidable then so is ! Use deciding as subroutine (ex.

function) to decide . This shows that is at least as difficult as . And therefore

must be undecidable also!

 is

Undecidable

Show. is reducible to .

Assume. is decidable.

Goal. Show then is decidable also (which we know is not true). (Always use a

contradiction when we do this kind of reduction).

Since is decidable there is a decider for .

The Reduction.

A ⟶ B

Undecidable ⇒ Undecidable

ATM ⟶ HALTHTM

Decidable ⇐ Decidable

ATM

A

B A

B A B

A B A B

HALTTM = {⟨M, w⟩ | M is a TM and M halts on input w}

ATM HALTTM

HALTTM

ATM

HALTTM R HALTTM

We construct decider for . Given input ...

 must accept if accepts and

 must reject if loops for or rejects .

Show is Undecidable

We can simulate on ...

If accepts or rejects, does the same.

BUT. What if is stuck in a loop?

Idea. Use decider for to test whether or not halts on .

If reports that does not halt on then and therefore must

reject.

If reports that halts on , simulate and if accepts or rejects, does the

same.

Therefore, If decider for exists, then we also can decide .

But is undecidable...

Contradiction

Therefore does not exist

S ATM ⟨M, w⟩

S M w

S M w w

HALTTM

M w

M S

M

R HALTTM M w

R M w ⟨M, w⟩ ∉ ATM S

R M w M M S

R HALTTM ATM

ATM

R

Therefore is undecidable

Undecidable Language

Previous Lecture

Lecture13

Next Lecture

Lecture15

HALTTM

ATM

HALTTM

