
CSC 320 - Lecture 13

#enumerators #turing-machines #TM #church-turing-thesis #yes-no-problems #high-level

#halting-problem #decider #decidable-languages

Enumerators

They are a variant of Turing Machine. An enumerator is a TM that outputs each

string of its language .

Note. An enumerator may output the same string(s) many times (even an infinite

amount of times).

A Language Is Turing-Recognizable If And Only

If Some Enumerator Outputs It

Proof.

�� Given enumerator , build TM that recognizes

�� Given TM , design enumerator that outputs

Given Enumerator , Build TM That Recognizes

Given enumerator that enumerates language , i.e., . Build (Multitape) TM

 that works as follows... "On input :

Run

Every time outputs a string , compare it with

if then accept".

Given TM , Design Enumerator That Outputs

Given TM recognizing language . Construct enumerator for ...

Let be list of all possible strings in ... "Ignore input.

Repeat for

Run for steps on each input from

If is accepted by then print

E

L(E)

E M L(E)

M E L(M)

E M L(E)

E A L(E) = A

M M = w

E

E s w

w = s

M E L(M)

M A E A

s1, s2, s3, . . . Σ E =

i = 1, 2, 3, . . .

M i sk s1, s2, s3, . . . , si

sk M sk

Note. We can't allow to enter an infinite loop.

Corollary

A language is Turing-Recognizable IFF some TM recognizes IFF some Multitape

TM recognizes IFF some Nondeterministic TM recognizes IFF some Enumerator

outputs .

The Church Turing Thesis

Algorithms & Turing Machines.

Recall. Definition of algorithm: Finite number of exact instructions (each instruction

is of finite length). Produces the desired result in a finite number of steps. (An

algorithm needs to stop).

Thesis. Algorithms = Deciders

Thus, a problem can be solved following an algorithm (while ignoring resource

limitations) if and only if it is computable by a Turing Machine.

Does There Exists An Algorithm / TM That

Decides The Halting Problem?

Halting Problem. Does there exist Algorithm / TM that, when given any code /

program with any input, determines if the program halts.

Note. We will discuss when we see undecidable.

Does There Exist A Decider For The Halting

Problem?

To figure this out we first study the High-Level descriptions of Turing Machines and

Prove that certain problems / languages are decidable using High-Level descriptions

of deciders.

Describing Turing Machines

New Focus. Turing Machines (i.e., deciders) as algorithms. TM serves as precise

model for definition of algorithm.

M

L L

L L

L

Formal Description. Spells out in full TM's states, transition function, ...

Implementation Description. Use English prose to describe was that TM moves

head(s) and way that it stores data on its tape(s). At this level no details of states or

transition function.

High-Level Description. English prose to describe algorithm, ignoring

implementation details. At this level no need to mention how TM manages its tape or

head.

High-Level Descriptions of TM's

English prose to describe algorithm. No need to mention how TM manages tape or

head. Format and Notation for describing TM.

Input to TM: String

Objects other than string as input must first be represented as string.

Notation for encoding of an object into its representation as string: ; several

objects : .

Example

Language consisting of all strings representing undirected graphs that are

connected.

Remember. A graph is connected if every node can be reached from every node by

travelling along the edges of the graph.

We Write. . Where is the encoding of

as string.

Recall. Connection between problems and solutions. A (decision or yes/no) problem

is a mapping from a set of problem instances to Yes/No (called yes-instances and no-

instances). Languages are abstract representation of problems. For a problem , the

associated language is...

Examples - Yes-No-Problems and Their

Languages

Sorted Sequence

O ⟨O⟩

O1, O2, . . . , Ok ⟨O1, O2, . . . , Ok⟩

A

A = {⟨G⟩|G is a connected undirected graph} ⟨G⟩ G

Π

LΠ

LΠ = {x ∈ Σ∗|x is a yes-instance of Π}

Input: A list of comparable elements .

Question: Are the elements, as given, in sorted order? That is: is it true that

?

 .

As language suitable for TM:

. (Encoding of list of comparable elements as string).

Connected Graph

Input: A simple, undirected graph .

Question: Is connected? That is: for any pairs of vertices , does there

exists a path from to in ?

.

As language suitable for TM:

.

Short Spanning Tree

Input: A simple, undirected, edge-weighted graph where each edge

 is assigned a positive integer weight , and integer .

Question: Does there exist a spanning tree for where has

weight at most ? That is: is a tree, , and ?

 .

As language suitable for TM:

 .

Example - Graph And Possible Encoding

n e1, e2, . . . , en

e1 ≤ e2 ≤. . . ≤ en

LSORTED SEQUENCE = {list l of comparable elements | elements of l are in sorted order}

LSORTED SEQUENCE = {⟨l⟩|l list of comparable elements

& elements of l are in sorted order}

G = (V , E)

G x, y ∈ V

x y G

LCONNECTED GRAPH = {G = (V , E)|G is a simple, undirected connected graph}

LCONNECTED GRAPH = {⟨G⟩|G is a simple, undirected connected graph}

G = (V , E)

e ∈ E w(e) k

T = (V , ET) G T

k T ET ⊆ E Σe∈ET
w(e) ≤ k

LSHORT SPANNING TREE = {(G = (V , E), k)|k is a positive integer and G

 is a simple, undirected, edge-weighted graph has a spanning tree of weight at most k}

LSHORT SPANNING TREE = {⟨G, k⟩|k is a positive integer and G

 is a simple, undirected, edge-weighted graph has a spanning tree of weight at most k}

A = {⟨G⟩|G is a connected undericted graph}

High-Level Description of TM Deciding

M = "On input :

�� Select first node of ; mark it

�� Repeat following step until no new nodes are marked

For each node in : mark if incident to an edge where the other

endpoint is already marked.

�� Scan all nodes of : determine whether or not they all are marked.

If they are: accept

Otherwise: reject."

In Contrast: Implementation-Level Description

M for input :

Step 0. Check whether input is proper encoding of graph.

 scans for proper form (i.e., two lists: vertices, edges)

first list (node list): distinct decimal numbers

second list (edge list): pairs of decimal numbers

 verifies that

node list contains no repetitions

use TM procedure for recognizing language

every node appearing on edge list also appears on node list

Step 1. March first node with dot on leftmost digit.

Step 2.

�� find undotted node , underline

�� find dotted node , underline

�� test whether is edge in graph

If is in edge list: dot , remove underlines; got to 1

Else is no edge in graph

move underline on to next dotted node (if such node exists), call it

If there are no more dotted nodes: is not attached to any dotted

nodes.

A

⟨G⟩

G

v G v

G

⟨G⟩ = (1, 2, 3, 4)((2, 4), (2, 3), (3, 4), (1, 4))

A

⟨G⟩

M

M

{#x1#x2#. . . #xl|each xi ∈ {0, 1}∗ and xi ≠ xj for each i ≠ j}

n1 n1

n2 n2

(n1, n2)

(n1, n2) n1

(n1, n2)

n2

n2

n1

update underlines: is next undotted node, is first dotted

node

�� If there are no more undotted nodes: continue with Step 3.

Step 3. scans list of nodes to determine whether all are dotted.

If yes: accepts

If no: rejects

Example - Other Decidable Problems /

Languages

Question. Is the following language decidable?

Previous Lecture

Lecture12

n1 n2

M

M

M

ADFA = {⟨B, w⟩ | B is a DFA that accepts input string w}

ANFA = {⟨B, w⟩ | B is a NFA that accepts input string w}

AREX = {⟨R, w⟩ | R is a regular expression that generates string w}

EDFA = {⟨A⟩ | A is a DFA and L(A) = ∅}

EQDFA = {⟨A, B⟩ | A and B are DFAs and L(A) = L(B)}

ATM = {⟨M, w⟩ | M is a TM and M accepts w}

Next Lecture

Lecture14

