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Enumerators

They are a variant of Turing Machine. An enumerator  is a TM that outputs each

string of its language .

Note. An enumerator may output the same string(s) many times (even an infinite

amount of times).

A Language Is Turing-Recognizable If And Only

If Some Enumerator Outputs It

Proof.

�� Given enumerator , build TM  that recognizes 

�� Given TM , design enumerator  that outputs 

Given Enumerator , Build TM  That Recognizes 

Given enumerator  that enumerates language , i.e., . Build (Multitape) TM 

 that works as follows...  "On input :

Run 

Every time  outputs a string , compare it with 

if  then accept".

Given TM , Design Enumerator  That Outputs 

Given TM  recognizing language . Construct enumerator  for ...

Let  be list of all possible strings in ...  "Ignore input.

Repeat for 

Run  for  steps on each input  from 

If  is accepted by  then print 
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Note. We can't allow  to enter an infinite loop.

Corollary

A language  is Turing-Recognizable IFF some TM recognizes  IFF some Multitape

TM recognizes  IFF some Nondeterministic TM recognizes  IFF some Enumerator

outputs .

The Church Turing Thesis

Algorithms & Turing Machines.

Recall. Definition of algorithm: Finite number of exact instructions (each instruction

is of finite length). Produces the desired result in a finite number of steps. (An

algorithm needs to stop).

Thesis. Algorithms = Deciders

Thus, a problem can be solved following an algorithm (while ignoring resource

limitations) if and only if it is computable by a Turing Machine.

Does There Exists An Algorithm / TM That

Decides The Halting Problem?

Halting Problem. Does there exist Algorithm / TM that, when given any code /

program with any input, determines if the program halts.

Note. We will discuss when we see undecidable.

Does There Exist A Decider For The Halting

Problem?

To figure this out we first study the High-Level descriptions of Turing Machines and

Prove that certain problems / languages are decidable using High-Level descriptions

of deciders.

Describing Turing Machines

New Focus. Turing Machines (i.e., deciders) as algorithms. TM serves as precise

model for definition of algorithm.
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Formal Description. Spells out in full TM's states, transition function, ...

Implementation Description. Use English prose to describe was that TM moves

head(s) and way that it stores data on its tape(s). At this level no details of states or

transition function.

High-Level Description. English prose to describe algorithm, ignoring

implementation details. At this level no need to mention how TM manages its tape or

head.

High-Level Descriptions of TM's

English prose to describe algorithm. No need to mention how TM manages tape or

head. Format and Notation for describing TM.

Input to TM: String

Objects other than string as input must first be represented as string.

Notation for encoding of an object  into its representation as string: ; several

objects : .

Example

Language  consisting of all strings representing undirected graphs that are

connected.

Remember. A graph is connected if every node can be reached from every node by

travelling along the edges of the graph.

We Write. . Where  is the encoding of 

as string.

Recall. Connection between problems and solutions. A (decision or yes/no) problem

is a mapping from a set of problem instances to Yes/No (called yes-instances and no-

instances). Languages are abstract representation of problems. For a problem , the

associated language  is...

Examples - Yes-No-Problems and Their

Languages

Sorted Sequence

O ⟨O⟩

O1, O2, . . . , Ok ⟨O1, O2, . . . , Ok⟩

A

A = {⟨G⟩|G is a connected undirected graph} ⟨G⟩ G

Π

LΠ

LΠ = {x ∈ Σ∗|x is a yes-instance of Π}



Input: A list of  comparable elements .

Question: Are the elements, as given, in sorted order? That is: is it true that 

?

     .

As language suitable for TM:  

. (Encoding of list of comparable elements as string).

Connected Graph

Input: A simple, undirected graph .

Question: Is  connected? That is: for any pairs of vertices , does there

exists a path from  to  in ?

.

As language suitable for TM: 

.

Short Spanning Tree

Input: A simple, undirected, edge-weighted graph  where each edge 

 is assigned a positive integer weight , and integer .

Question: Does there exist a spanning tree  for  where  has

weight at most ? That is:  is a tree, , and ?

   

 .

As language suitable for TM: 

   

 .

Example - Graph And Possible Encoding

n e1, e2, . . . , en

e1 ≤ e2 ≤. . . ≤ en

LSORTED SEQUENCE = {list l of comparable elements | elements of l are in sorted order}

LSORTED SEQUENCE = {⟨l⟩|l list of comparable elements

& elements of l are in sorted order}

G = (V , E)

G x, y ∈ V

x y G

LCONNECTED GRAPH = {G = (V , E)|G is a simple, undirected connected graph}

LCONNECTED GRAPH = {⟨G⟩|G is a simple, undirected connected graph}

G = (V , E)

e ∈ E w(e) k

T = (V , ET ) G T

k T ET ⊆ E Σe∈ET
w(e) ≤ k

LSHORT SPANNING TREE = {(G = (V , E), k)|k is a positive integer and G

 is a simple, undirected, edge-weighted graph has a spanning tree of weight at most  k}

LSHORT SPANNING TREE = {⟨G, k⟩|k is a positive integer and G

 is a simple, undirected, edge-weighted graph has a spanning tree of weight at most  k}

A = {⟨G⟩|G is a connected undericted graph}



High-Level Description of TM Deciding 

M = "On input :

�� Select first node of ; mark it

�� Repeat following step until no new nodes are marked

For each node  in : mark  if incident to an edge where the other

endpoint is already marked.

�� Scan all nodes of : determine whether or not they all are marked.

If they are: accept

Otherwise: reject."

In Contrast: Implementation-Level Description 

M for input :

Step 0. Check whether input is proper encoding of graph.

 scans for proper form (i.e., two lists: vertices, edges)

first list (node list): distinct decimal numbers

second list (edge list): pairs of decimal numbers

 verifies that

node list contains no repetitions

use TM procedure for recognizing language 

    

every node appearing on edge list also appears on node list

Step 1. March first node with dot on leftmost digit.

Step 2.

�� find undotted node , underline 

�� find dotted node , underline 

�� test whether  is edge in graph

If  is in edge list: dot , remove underlines; got to 1

Else  is no edge in graph

move underline on  to next dotted node (if such node exists), call it 

If there are no more dotted nodes:  is not attached to any dotted

nodes.
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v G v

G

⟨G⟩ = (1, 2, 3, 4)((2, 4), (2, 3), (3, 4), (1, 4))

A

⟨G⟩

M

M

{#x1#x2#. . . #xl|each xi ∈ {0, 1}∗ and xi ≠ xj for each i ≠ j}
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n2 n2
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(n1, n2)

n2

n2
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update underlines:  is next undotted node,  is first dotted

node

�� If there are no more undotted nodes: continue with Step 3.

Step 3.  scans list of nodes to determine whether all are dotted.

If yes:  accepts

If no:  rejects

Example - Other Decidable Problems /

Languages

 

 

 

 

 

Question. Is the following language decidable?
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n1 n2

M

M

M

ADFA = {⟨B, w⟩ | B is a DFA that accepts input string w}

ANFA = {⟨B, w⟩ | B is a NFA that accepts input string w}

AREX = {⟨R, w⟩ | R is a regular expression that generates string w}

EDFA = {⟨A⟩ | A is a DFA and L(A) = ∅}

EQDFA = {⟨A, B⟩ | A and B are DFAs and L(A) = L(B)}

ATM = {⟨M, w⟩ | M is a TM and M  accepts w}
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