
CSC 320 - Lecture 11
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Non Context-Free Languages

Idea. Stack not sufficient to keep track of more than one counter.

Pumping Lemma - Context-Free Languages

If  is a context-free language, then there is a number  (pumping length) such that:

if  is any string in  of length at least , then  may be divided into five pieces 

 satisfying the conditions...

�� for each , ,

�� , and

�� .

Example

Use pumping lemma for context-free languages to show:  is not

context free.

Proof by contradiction...

Assume  is context free

Let  be pumping length for  (guaranteed to exist by PL)

Choose a string ,  with the goal to show  is a counterexample to

properties of PL for  being regular, i.e. we want to show...

 cannot be divided into five strings  satisfying...

�� for each , ,

�� , and

�� . 

how

B = {anbncn n ≥ 0}

A p

s A p s

s = uvxyz

i ≥ 0 uvixyiz ∈ A

|vy| > 0

|vxy| ≤ p

B = {anbncn n ≥ 0}

B

p B

s ∈ B |s| ≥ p s

B

s s = uvxyz

i ≥ 0 uvixyiz ∈ A

|vy| > 0

|vxy| ≤ p



Goal. Show  not context free.

Proof by Contradiction. Assume  context free.

 be pumping length for 

Let 

Then  and 

Let's think about dividing  into 

Because of 2) , i.e.  or 

Because of 3) i.e. , yielding these cases:

A.   with   

B.   with  or   

C.   with   

D.   with  or   

E.   with  

Note. Make sure you write down all the cases!! You need to disprove each case.

Example

 is not context free.

Note. We don't know how to do split  and we can't do that with the stack.

Proof by Contradiction: Assume that  is context free.

 pumping length for 

Choose 

 for  with . .

Show there is not rewriting for  into  such that PL conditions hold.

Because of 3)  is of one of the following forms...

A.   with either  or  (i.e.,  or ). 

B.   with either  or  (i.e.,  or ). 

B = {anbncn n ≥ 0}

B

p B

s = apbpcp

s ∈ B |s| ≥ p

s u, v, w, x, y, z

vy ≠ ε v ≠ ε y ≠ ε

|vxy| ≥ p

vxy = a. . . a ⇒ uv2xy2z = akbpcp k > p ∉ B

vxy = a. . . ab. . . b ⇒ uv2xy2z = akblcp k > p l > p ∉ B

vxy = b. . . b ⇒ uv2xy2z = apbkcp k > p ∉ B

vxy = b. . . bc. . . c ⇒ uv2xy2z = apbkcl k > p l > p ∉ B

vxy = c. . . c ⇒ uv2xy2z = apbpck k > p ∉ B

L = {ww|w ∈ {0, 1}∗}

ww

L

p L

s = 0p1p0p1p

0p1p0p1p ∈ L s = ww w = 0p1p |s| = 4p ≥ p

s s = uvxyz

vxy

vxy = 00. . . 0 ⇒ uv2xy2z = 0k1p0l1p k > p l > p 0k1p0p1p 0p1p0k1p

vxy = 11. . . 1 ⇒ uv2xy2z = 0p1k0p1l k > p l > p 0p1k0p1p 0p1p0p1k



C.   or  with  or  

D.   with either  or 

Conclusion. There is not rewriting for  into  and .

Chomsky Hierarchy

Context-Sensitive. Is a formal grammar in which the left-hand sides and right-hand

sides of any production rules may be surrounded by context of terminal and

nonterminal symbols. Context-Sensitive grammars are more general than Context-

Free grammars, in the sense that there are languages that can be described by GSG

but not by CFG.

Turing Machines

Up Next. Church-Turing Thesis, Decidability, Reducibility, Complexity Theory (P vs

NP).

The Turing Machine (TM) is much more powerful model than FA/PDA. First proposed

by Alan Turing in 1936 (1912 - 1954). It is similar to finite automaton but it has

unlimited & unrestricted memory. More accurate model of a general purpose

computer. (A Turing Machine can do everything a (classical) computer can do).

What Does A Turing Machine Look Like?

Infinite Tape representing its unlimited memory. The Tape Head can read symbols,

write symbols, and move around on the tape.

vxy = 00. . . 011. . . 1 ⇒ uv2xy2z = 0k1l0p1p uv2xy2z = 0p1p0k1l k > p l > p

vxy = 11. . . 100. . . 0 ⇒ uv2xy2z = 0p1k0l1p k > p l > p

s s = uvxyz uv2xy2z ∈ L



Computation. Initially the tape contains only input string and blank everywhere

else. If TM needs to store information, it may write this information on tape. To read

information that TM has written the machine can move its head back over it. The TM

continues computing until it decides to produce an output. The outputs accept and

reject are obtained by entering designated accepting and rejecting states. If TM does

not enter accepting or rejecting state, computation will continue (i.e., infinite loop).

The reject state helps us by allowing us not to read the whole thing if not necessary.

Differences Between Finite Automata and Turing

Machines

TM FA

TM can both write on and read from tape FA can only read from tape

Read-write head can move both left and right Read head can move right

Tape is infinite

Special states for rejecting and accepting take

effect immediately (no need to finish reading

the input)

Special state accepting takes

effect only after finishing

reading of input

How Does a TM Operate?

TM  for testing membership in language . (Note. the  is not

necessary, but it makes things easier).

 can to move back and forth over input and make marks on it.  accepts if its input

is a member of  (That Is. Input consists of two identical string separated by symbol 

).  rejects otherwise.

Strategy. Go forth and back to the corresponding places on the two sides of the #

and determine wether or not they match.

To keep track of which places correspond,  places marks on tape.  crosses off

each pair of symbols as it is examined. If  crosses off all the symbols, then

M B = {w#w|w ∈ {0, 1}∗} #

M M

B

# M

M M

M



everything is matched successfully and  accepts. If  discovers a mismatch, 

rejects.

Example

Input. 011000#011000

Start at the leftmost position.

0 1 1 0 0 0 # 0 1 1 0 0 0

Cross out 0, move to the right and look for the next symbol right of #. If 0 then

cross out and move left.

x 1 1 0 0 0 # 0 1 1 0 0 0

x 1 1 0 0 0 # x 1 1 0 0 0

Find first symbol not crossed out.

x 1 1 0 0 0 # x 1 1 0 0 0

Cross out 1, move to the right and look for the next symbol right of . If 1 then

cross out and move left.

x x 1 0 0 0 # x 1 1 0 0 0

x x 1 0 0 0 # x x 1 0 0 0

Find first symbol not crossed out.

M M M

B = {w#w|w ∈ {0, 1}∗}

↑

↑

↑

#

↑



x x 1 0 0 0 # x x 1 0 0 0

Cross out 1, move to the right and look for the next symbol right of . If 1 then

cross out and move left.

x x x 0 0 0 # x x 1 0 0 0

x x x 0 0 0 # x x x 0 0 0

Find first symbol not crossed out.

x x x 0 0 0 # x x x 0 0 0

Cross out 0, move to the right and look for the next symbol right of . If 0 then

cross out and move left.

x x x x 0 0 # x x x 0 0 0

x x x x 0 0 # x x x x 0 0

Etc.

x x x x x x # x x x x x x

x x x x x x # x x x x x x

Accept

↑

#

↑

↑

#

↑

↑

↑



x x x x x x # x x x x x x

Note. When we encounter a blank we know we are finished reading.

Turing Machine - Formal Definition

A Turing Machine (TM) is a 7-tuple  where...

 are finite sets

 set of states

 input alphabet not containing blank symbol 

 tape alphabet;  and 

 transition function

 start state

 accept state

 reject state with 

Note. Considering the definition (i.e., transition function) is the TM deterministic or

non-deterministic?

Note. The transition function of TM is deterministic!

Note. You can have more than one accept state and reject state, but we will use one

of each for simplicity.

Configuration of a Turing Machine

Given TM , a configuration of  consists of a description of...

Its current state

Its current tape contents

Its current head location

For a state  and strings , we write  for the configuration where

The current state is 

The current tape content is 

The current head location is the first symbol of 

The tape contains only blanks following the last symbol of 

⊔

↑

(Q, Σ, Γ, δ, q0, qaccept, qreject)

Q, Σ, Γ

Q

Σ ⊔

Γ ⊔ ∈ Γ Σ ⊆ Γ

δ : Q × Γ → Q × Γ × {L, R}

q0 ∈ Q

qaccept ∈ Q

qreject ∈ Q qreject ≠ qaccept

M M

q u, v ∈ Γ∗
u, q, v

q

uv

v

v

↓

u v



Computation of the Turing Machine

During computation changes occur in state, tape contents and head location.

We Define. Configuration(s) of TM and Computation Change in Configuration.

Configuration of a Turing Machine

For TM , let  and , and let    and  be two

configurations. We say...

 yields  if

 (i.e.,  moves leftward).

 yields  if

 (i.e.,  moves rightward).

Note.  is in state , reads symbol , changes into state , replaces  by , and move

its head one cell to the left.

Note.  is in state , reads symbol , changes into state , replaces  by , and move

its head one cell to the right.

Special Cases

Left-Hand End (Head is at leftmost cell)

Configuration  yields configuration  if transition is left-moving

prevents  from going off left-hand end of tape (i.e., ).

Note. We overwrite.

M a, b, c ∈ Γ, u, v ∈ Γ∗ qi, qj ∈ Q ua qi bv u qj acv

ua qi bv u qj acv

δ(qi, b) = (qj, c, L) M

ua qi bv uac qj v

δ(qi, b) = (qj, c, R) M

M qi b qj b c

M qi b qj b c

qi bv qj cv

M δ(qi, b) = (qj, c, L)



 yields  if transition is right-moving (i.e., ). (As expected).

Right-Hand End

Configuration  is equivalent to  because we assume that blanks

follow part of tape represented in configuration.

Start Configuration

: input is ,  is in start state  with its head at leftmost position on

the tape.

Halting Configurations

Accepting Configuration the state is 

Rejecting Configuration state is 

Computation of a Turing Machine

TM  accepts input  if a sequence of configurations ,  exists, where...

 is start configuration of  on input 

each  yields , and

 is an accepting configuration

qi bv c qj v δ(qi, b) = (qj, c, R)

ua qi ua qi ⊔

q0w w M q0

qaccept

qreject

M w C1 C2. . . Ck

Ci M w

Ci Ci+1

Ck



Language  of , or the language recognized by , is the collection of all

strings that  accepts.

Possible Outcomes of a Computation

Possible outcomes of a TM on input 

Accept, Reject, Loop (Machine also fails to accept ).

A TM that halts on every input is called a decider.

Turing Machines & Their Languages

If a language  is recognized by some TM, we call  Turing-Recognizable.

We call a language  Turing-Decidable (or decidable) if there exists a decider 

that recognizes . (We also say that  decides ).

Note. Every Turing-Decidable language is also Turing-Recognizable. (It does not

always work the other way around). The Turing-Decidable is a special case of TM.

Question. Can a decider enter an infinite loop? NO!

Decidable Languages - Informal Description

Let . We describe  that decides .

On input string 

�� Sweep left to right, crossing off every other 0

�� If in step 1 the tape contained exactly one 0: accept

�� If in step 1 the tape contained more than one 0, and the number of zeros was

odd: reject

�� Otherwise return the head to the left-hand end of the tape

�� Go to step 1.

Note. 0, 00, 0000, 00000000 are in the language.

Formal Description of a TM 

Let  with...

 where...

L(M) M M

M

w

w

L L

L M

L M L

L = {02n

|n ≥ 0} M L

w ∈ {0∗}

M

L = {02n

|n ≥ 0}

M = (Q, Σ, Γ, δ, q1, qaccept, qreject)

Q = {q1, q2, q3, q4, q5, qaccept, qreject}



 is start state

 is accept state and  is reject state

 transition function

State Diagram 

Example - 0000

State 

0 0 0 0

First 0 replaced by  to mark left-hand.

State 

0 0 0

Cross out every other 0

State 

x 0 0

q1

qaccept qreject

Σ = {0}

Γ = {0, x, ⊔}

δ

q1

↓

⊔

q2

↓

⊔

q3

↓

⊔



State 

x 0 0

State 

x 0 x

Move to the left

State 

x 0 x

State 

x 0 x

State 

x 0 x

State 

x 0 x

Look for remaining 0s

State 

x 0 x

q4

↓

⊔

q3

↓

⊔ ⊔

q5

↓

⊔ ⊔

q5

↓

⊔ ⊔

q5

↓

⊔ ⊔

q5

↓

⊔ ⊔

q2

↓

⊔ ⊔



Cross out every other remaining 0

State 

x 0 x

State 

x x x

Move to the left

State 

x x x

State 

x x x

State 

x x x

State 

x x x

State 

x x x

q2

↓

⊔ ⊔

q3

↓

⊔ ⊔

q3

↓

⊔ ⊔

q5

↓

⊔ ⊔

q5

↓

⊔ ⊔

q5

↓

⊔ ⊔

q5

↓

⊔ ⊔



Look for remaining 0s

State 

x x x

State 

x x x

State 

x x x

No 0 left

State 

x x x

Accept

State 

x x x

Example - 00000

State 

0 0 0 0 0

Firs 0 replaced by  to mark left-hand

q2

↓

⊔ ⊔

q2

↓

⊔ ⊔

q2

↓

⊔ ⊔

q2

↓

⊔ ⊔

qaccept

↓

⊔ ⊔ ⊔

q1

↓

⊔



State 

0 0 0 0

Cross out every other 0

State 

x 0 0 0

State 

x 0 0 0

State 

x 0 x 0

Number if 0s encountered not even

State 

x 0 x 0

State 

x 0 x 0

Example - 000000

Note. Do this as practice! It will be rejected!

Example

q2

↓

⊔

q3

↓

⊔

q4

↓

⊔

q3

↓

⊔

q4

↓

⊔ ⊔

qreject

↓

⊔ ⊔ ⊔



Decider 

Describe TM  as high level description and state diagram.

Example

    

Describe a TM that recognizes . What kind of states would we want? (Next

Assignment)?

Previous Lecture

Lecture10b

Next Lecture

Lecture12

L = {w#w|w ∈ {0, 1}∗}

M = (Q, Σ, Γ, δ, q1, qaccept, qreject)

Q = {q1, . . . , q8, qaccept, qreject}

Σ = {0, 1, #}

Γ = {0, 1, #, x, ⊔}

L

L = {#x1#x2#. . . #xl|eachxi ∈ {0, 1}∗ and xi ≠ xj for each i ≠ j}

L


