
CSC 320 - Lecture 10b

#context-free #PDA #languages #non-context-free #pumping-lemma

Pushdown Automata

Think. Nondeterministic finite automaton with addition of stack. (We note that

deterministic PDA are different). The PDA is automatically more powerful.

A stack provides additional memory.

Show. We will show that languages recognized by pushdown automata are exactly

the context-free languages.

Definition

A pushdown automaton (PDA) is a 6-tuple with...

: finite set of states

: finite input alphabet

: finite stack alphabet

 transition function

: start state

: set of accept states

Note. and

Note. You can also have a 7-tuple where is the start symbol for the stack.

Computation of PDA

Let be a PDA. Then accepts input if can be written as

, where: and there exist states and

strings such that...

 and

for with , and

(Q, Σ, Γ, δ, q0, F)

Q

Σ

Γ

δ : Q × Σε × Γε ⟶ P(Q × Γε)

q0 ∈ Q

F ⊆ Q

Σε = Σ ∪ {ε} Γε = Γ ∪ {ε}

Z0 ∈ Γ

M = (Q, Σ, Γ, δ, q0, F) M w ∈ Σ∗ w

w = w1w2. . . wm, |w| ≤ m wi ∈ Σε r0, r1, . . . , rm ∈ Q

s0, s1, . . . , sm ∈ Γ∗

r0 = q0 s0 = ε

i = 0, . . . , m − 1 : (ri+1, b) ∈ δ(ri, wi1 , a) si = at, si+1 = bt a, b ∈ Γε t ∈ Γ∗

rm ∈ F

Note. : sequence of stack contents that has on accepting branch (of

computation). starts computation with empty stack.

Note

 means: when is in state reading from input and top stack

symbol is , then can do the following: move into state and replace top stack

symbol by .

If then top stack symbol is ignored and symbol is push onto stack.

If then top stack symbol is removed from stack.

Example: State Diagram Representation of PDA

, : Input

Note. Empty string is accepted.

Note. It is nicer if you empty the stack at the end of reading the accepted string. But

it is not obligatory. We only require that the stack is empty at the start.

Mini Example

Input (NOT ACCEPTED)

Stack: (Read 0)

Stack: (Read 1)

Stack (Remove)

s′
is M

M

(ri+1, b) ∈ δ(ri, wi1 , a) M ri wi+1

a M ri+1

b

a = ε b

b = ε a

Σ = {0, 1} Γ = {0, $} w = 0011

L = {0n1n|n ≥ 0}

w = 0101

$

$0

$ $

Sequence: .

Computation

In reading input symbol and ignoring stack content, move to and push

symbol onto stack.

In reading first input symbol 0 and ignoring stack content, remain in and

push symbol 0 onto stack.

In reading second input symbol 0 and ignoring stack content, remain in and

push symbol 0 onto stack.

In reading third input symbol 1 and while 0 is top stack symbol, move to

and pop symbol 0 from stack.

In reading fourth input symbol 1 and while 0 is top stack symbol, remain in

and pop symbol 0 from stack.

In reading input symbol and while is top stack symbol, move to and pop

symbol from stack.

Stack

0

0

Note. When is ? NO!

What is ?

Example: Designing DFA

q1q2q2q3q4

q1 ε q2

$

q2 q2

q2 q2

q2 q3

q3 q3

q3 ε $ q4

$

$

s = 00011 s ∈ L(M)

L(M) L = {0n1n|n ≥ 0}

L = {wwR|w ∈ {0, 1}∗}

Note. Only strings accepted by the machine are of form . However, not every

possible computation branch will yield acceptance, and every string of form has

accepting branch in computation tree.

What is the accepting state sequence of computation for input ?

None of the above.

Sequence:

Context-Free Languages

Theorem. A language is context free if and only if some PDA recognizes it.

Proof Idea.

If. Since every context free language can be produced by context free

grammar , convert into PDA with .

Only If. Given pushdown automaton , create context free grammar with

.

If language is context free then some PDA recognizes it.

Given context-free, , design PDA .

wwR

wwR

w = 10100101

q1q2q2q3q4

q1q2q2q2q3q3q3q3q4

q1q2q2q2q2q2q3q3q3q3q3q4

q1q2q2q2q2q2q2. . .

L

G, L = L(G) G M L(M) = L(G) = L

M G

L(G) = L(M)

G = (V , Σ, R, S) L = L(G) M = (Q, Σ, Γ, δ, q0, F)

Places marker symbol () and start variable onto (empty) stack.

For each top stack symbol...

If variable, say , then choose from some rule and

substitute with (with new top symbol).

If terminal, say , read next input symbol reject if , pop if .

If go to accept state.

Detailed Description of

For context-free design with...

 set of auxiliary states to push right hands of rules in

onto stack.

's Transitions

In when reading and top symbol : push first and then onto stack and

move into .

For each rule , in : in for top stack symbol : replace by

 and remain in .

For each terminal : if is top stack symbol then pop and remain in .

If is top stack symbol then pop and move into

Example

Note. Midterm Practice: Test grammar and input on strings and .

$ S

A G A⟶ u, u = α1α2. . . αk

A α1α2. . . αk α1

a wi wi ≠ a wi = 1

$

M

G = (V , Σ, R, S) M = (Q, Σ, Γ, δ, q0, F)

Q = {qstart, qloop, qaccept}∪ R

Γ = V ∪ Σ ∪ {$}

q0 = qstart

F = {qaccept}

M

qstart ε ε $ S

qloop

A⟶ α1α2. . . αk R qloop A A

α1α2. . . αk qloop

a ∈ Σ a a qloop

$ $ qaccept

011001 000#111

PDA representing derived intermediate string .

Transition are used to cleanup the stack.

Note. PDA simulates 's leftmost derivation.

If a PDA recognizes some language then it is context free

Step 1: Simplify PDA

Single accept state (Add new state, -transition (don't read, pop) from

each (original) accept state to new state. Make new state only accept

state).

 always popped exactly before moving into accept state. (Only transition

from start state: push onto empty stack).

Transition either push or pop, not both at the same time. (Every transition

that replaces top stack symbol replace by two transitions: first one pop's

the symbol and a second following directly after pushing the (original)

replacement into stack).

Step 2: Design Grammar

Previous Lecture

Lecture10a

Next Lecture

Lecture11

01A1A0

a, a⟶ ε

G

ε $

$

$

