
CSC 320 - Lecture 10a

#CNF #textbook #context-free #languages #grammars #CFL #CFG #ambiguous

Introduction Theory Computation Textbook

Chapter 2 - Page 101

Context-Free Languages

These grammars can describe certain features that have a recursive structure, which

makes them useful in a variety of applications. We note its importance in parsers

that extract the meaning of a program prior to generating the compiled code or

performing the interpreted execution.

Context-Free Languages include all the regular languages and many additional

languages.

We will also introduce pushdown automate, a class of machines recognizing

context-free languages.

All strings generated in this way constitute the language of the grammar.

Any language that can be generated by some context-free grammar is called a

context-free language (CFL).

The language of the grammar is .

In grammar , and is the collection of three rules

, and . In grammar ,

and '' " . The symbol '' " is the blank symbol, placed invisibly after

each word (a, boy, etc.), so the words won't run together.

Designing Context-Free Grammars

The design of context-free grammars requires creativity.

{w ∈ Σ∗|S ⇒∗
w}

G1, V = {A, B}, Σ = {0, 1, #}, S = A R

A ⟶ 0A1|B B ⟶ # G2

V = {⟨SENTENCE⟩, ⟨NOUN − PHRASE⟩, ⟨V ERB − PHRASE⟩,
⟨PREP − PHRASE⟩, ⟨CMPLZ − NOUN⟩, ⟨CMPLX − V ERB⟩,
⟨ARTICLE⟩, ⟨NOUN⟩, ⟨V ERB⟩, ⟨PREP⟩},

Σ = {a, b, c, . . . , z, }

Example

Design a grammar for the language . We first construct the

grammar...

for the language and the grammar...

for the language and then add the rule to give the grammar

Note. Construction a CFG for a language that happens to be regular is easy if you

can first construct a DFA for that language. You can convert any DFA into an

equivalent CFG.

Ambiguity

Sometimes a grammar can generate the same string in several different ways. This

result may be undesirable for certain applications, such as programming languages,

where a program should have a unique interpretation.

We say that if a grammar generates the same string in different ways that the string

is derived ambiguously.

A grammar that is not ambiguous is unambiguous.

Note. When we say that a grammar generates a string ambiguously, we mean that

the string has two different parse trees, not two different derivations. Thus, we use

the following to help define: a derivation of a string in a grammar is a leftmost

derivation if at every step the leftmost remaining variable is the one replaced.

Definition. A string is derived ambiguously in context-free grammar if it has

two or more different leftmost derivations. Grammar is ambiguous if it generates

some string ambiguously.

Note. Some context-free languages can be generated only by ambiguous grammars.

Such languages are called inherently ambiguous.

Chomsky Normal Form

{0n1n|n ≥ 0} ∪ {1n0n|n ≥ 0}

S1 ⟶ 0S11|ε

{0n1n|n ≥ 0}

S2 ⟶ 1S20|ε

{1n0n|n ≥ 0} S ⟶ S1|S2

S ⟶ S1|S2

S1 ⟶ 0S11|ε
S2 ⟶ 1S20|ε

w G

w G

G

Restricted (simplified) constrains on grammar.

Definition. A context-free grammar is in Chomsky Normal Form if every rule is of

the form

where is any terminal and and are any variables -- except that and may

not be the start variable. In addition, we permit the rule , where is the start

variable.

Example

Let be the following CFG and convert it to CNF by using the conversion procedure.

The series of grammars presented illustrates the steps in the conversion. Rules

shown in bold have just been added. Rules shown in ForestGreen have just been

removed.

�� The original CFG is shown on the left. The result of applying the first step to

make a new start variable appears on the right.

Note. is not allowed in CNF because can't be on the right side.

�� Remove -rules , shown on the left, and , shown on the right.

For each and occurrence of : add . For : add

unless was removed previously.

�� a) Remove unit rules , show on the left, and , shown on the right.

Given : for each appearance of and , unless previously

removed.

A ⟶ BC

A ⟶ a

a A, B, C B C

S ⟶ ε S

G

G

S ⟶ ASA|aB S0⟶ S

A ⟶ B|S S ⟶ ASA|aB

B ⟶ b|ε A ⟶ B|S
B ⟶ b|ε

A ⟶ B|S S

ε B ⟶ ε A ⟶ ε

S0 ⟶ S S0 ⟶ S

S ⟶ ASA|aB|a S ⟶ ASA|aB|a|SA|AS|S
A ⟶ B|S|ε A ⟶ B|S|ε
B ⟶ b|ε B ⟶ b

W ⟶ uBv B W ⟶ uv W ⟶ B W ⟶ ε

W ⟶ ε

S ⟶ S S0 ⟶ S

S0 ⟶ S S0 ⟶ S|ASA|aB|a|SA|AS

S ⟶ ASA|aB|a|SA|AS|S S ⟶ ASA|aB|a|SA|AS

A ⟶ B|S A ⟶ B|S
B ⟶ b B ⟶ b

S0 ⟶ S S ⟶ u S0 ⟶ u

�� b) Remove unit rules and .

Given : for each appearance of and , unless previously

removed.

Given : for each appearance of add , unless previously removed.

�� Convert the remaining rules into the proper form by adding additional variables

and rules. The final grammar in CNF is equivalent to .

Note. is too long - only allowed two variables! We also don't like because it is

a mix of terminals and variables.

Previous Lecture

Lecture09

Next Lecture

Lecture10b

A ⟶ B A ⟶ S

S0 ⟶ ASA|aB|a|SA|AS S0 ⟶ ASA|aB|a|SA|AS

S ⟶ ASA|aB|a|SA|AS S ⟶ ASA|aB|a|SA|AS

A ⟶ B|S|b A ⟶ S|b|ASA|aB|a|SA|AS

B ⟶ b B ⟶ b

S0 ⟶ ASA|aB|a|SA|AS

S ⟶ ASA|aB|a|SA|AS

A ⟶ b|ASA|aB|SA|AS

B ⟶ b

A ⟶ B B ⟶ u A ⟶ u

A ⟶ S S ⟶ u A ⟶ u

G

S0 ⟶ AA1|UB|a|SA|AS

S ⟶ AA1|UB|a|SA|AS

A ⟶ b|AA1|UB|a|SA|AS

A1 ⟶ SA

U ⟶ a

B ⟶ b

ASA aB

