

Coming Up

Context-free grammars, Pushdown automata, Context-free languages.

Context-Free Grammars

They are a more powerful methods to describe languages. First used to study (describe structure of) human languages. It was invented by Noam Chomsky. Relationship of terms such as *noun*, *verb*, and *preposition*: natural recursion. *Noun* phrases may appear inside *verb* phrases and vice versa.

Compute Science Application: Specification and Compilation of Programming Languages.

- Grammar for programming language: reference for people learning syntax.
- Designing compilers and interpreters: first obtain grammar for language.
- Parser: uses grammar to extract meaning of program prior to generating compiled code.

What's a Grammar? Example!

- Grammar G
 - $A \longrightarrow 0A1$
 - $A \longrightarrow B$
 - $B \longrightarrow \#$
- G consists of
 - Productions/Rules (Substitution Rules)
 - Symbols (Variable), Arrow, String (Variables and Terminals)
 - Terminology: Use capital letters for variables!

We have 3 (substitution) rules, 2 variables: A, B, 3 terminals 0, 1, #, start variable: A.

What Does A Grammar Do?

Grammar $G: A \longrightarrow 0A1, A \longrightarrow B$, and $B \longrightarrow \#$

- *G* describes a language *L* by generating each string of *L* as follows...
 - 1. Write down the start variable
 - Normally variable on the left-hand side of the top rule.
 - 2. Find a variable that is written down and a rule that starts with that variable. Replace written down variable with right-hand side of that rule.
 - 3. Repeat step 2 until no variable remains.

Example of deriving a string from G:

• $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000\#111$.

What is L(G)?

L(G): set of all strings that can be derived from G. Thus, for the example above $000\#111 \in L(G)$.

• $A \Rightarrow B \Rightarrow \# \in L$

Note. We use \Rightarrow for substitutions rules.

 $L(G) = \{0^n \# 1^n | n \ge 0\}$

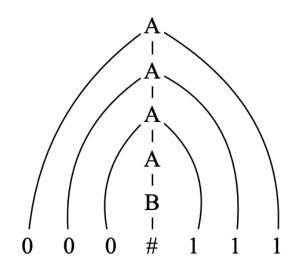
Mini Example

 $G: A \longrightarrow 0A1, A \longrightarrow B$, and $B \longrightarrow \varepsilon$ then the language would be $L(G) = \{0^n 1^n | n \ge 0\}.$

Parse Tree for Derivation of G

• $A \Rightarrow 0A1 \Rightarrow 00A11 \Rightarrow 000A111 \Rightarrow 000B111 \Rightarrow 000\#111$

Parse Tree. Hierarchical representation of terminals and non-terminals. The leaves of a parse tree are the terminals.



Context-Free Grammars Definition

A context-free grammar is a 4-tuple (V, Σ, R, S) .

- V: finite set of **variables**
- Σ : finite set of **terminals** (disjoint from V)
- *R*: finite set of (substitution) **rules**
 - each rule *R*: *a variable* substituted by *a string over variables and terminals*
- $S \in V$: start variable
- The right hand side of a rule may be ε

More Terminology

- Given grammar $G = (V, \Sigma, R, S)$
 - Let u, v and w be strings of variables and terminals, and let $A \longrightarrow w$ be a rule of G. Then
 - uAv yields uwv, written $uAv \Rightarrow uwv$.
 - u **derives** v, written $u \Rightarrow^* v$, if u = v or if a sequence u_1, u_2, \ldots, u_k exists for $k \ge 0$ and $u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \ldots \Rightarrow u_k \Rightarrow v$
 - The language of grammar G is: $L(G) = \{w \in \Sigma^* | S \Rightarrow^* w\}$

The class of languages described by context-free grammars is the class of **context-***free languages*.

Note. We do \Rightarrow^* when we group a bunch of rules together for the derivation.

Examples

Terminology. $S \longrightarrow (S)|SS|\varepsilon$ short for $S \longrightarrow (S), S \longrightarrow SS, S \longrightarrow \varepsilon$.

- Given $G(V, \Sigma, R, S)$ with $V = \{S\}$, $\Sigma = \{(,)\}$, and R is given by: $S \Rightarrow (S)|SS|\varepsilon$
- Then we can **derive** string ((((()()())))) as follows...
 - Note. The symbol replaced in next derivation step is underlined.

Examples

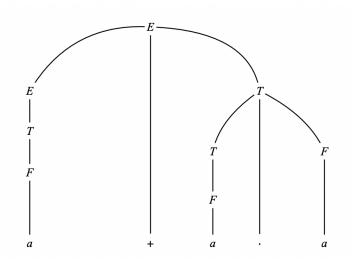
Produce a grammar for language $\{1^n 0^n | n \ge 0\}$

• $G = (V, \Sigma, R, S)$ with $V = \{S\}, \Sigma = \{0, 1\}, R : S \longrightarrow 1S0|\varepsilon$.

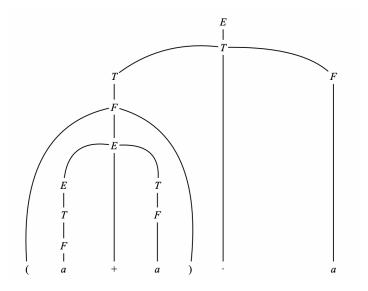
Examples

Given $G = (V, \Sigma, R, E)$ with $V = \{E, F, T\}$, $\Sigma = \{a, +, *, (,)\}$, and R is given by: $E \longrightarrow E + T|T, T \longrightarrow T * F|F, F \longrightarrow (E)|a.$

Parse Tree For a + a * a



Parse Tree For (a + a) * a



Leftmost Derivations

We call a derivation of string *w* in grammar *G* **leftmost derivation** if at every step the leftmost remaining variable is replaced.

Ambiguous Grammars

A string *w* is derived **ambiguously** in context-free grammar *G* if it has at least two different leftmost derivations. Such a grammar is called **ambiguous**.

Example

Given $G = (V, \Sigma, R, E)$ with $V = \{E\}$, $\Sigma = \{a, +, *, (,)\}$, and R is given by: $E \longrightarrow E + E|E * E|(E)|a$

Two leftmost derivation in $E \longrightarrow E + E|E * E|(E)|a$

- $E \Rightarrow E * E \Rightarrow E + E * E \Rightarrow a + E * E \Rightarrow a + a * E \Rightarrow a + a * a$
- $E \Rightarrow E + E \Rightarrow a + E \Rightarrow a + E * E \Rightarrow a + a * E \Rightarrow a + a * a$.

We see that a + a * a is derived ambiguously in G. Therefore G is ambiguous.

We Learned

What a context-free grammars are, what a language of context-free grammar is, that ambiguous grammars exist.

Next...

Chomsky Normal Form (CNF). Helps dealing with ambiguity, constraint grammar rules.

Chomsky Normal Form

Restricted (simplified) constrains on grammar. A context-free grammar $G = (V, \Sigma, R, S)$ is in **Chomsky Normal Form** if every rule is of the form...

- $A \Rightarrow BC$ or $A \Rightarrow a$ where...
 - $\bullet \ \ a \in \Sigma$
 - $A,B,C\in V$
 - *B*, *C* may not be the start variable.
 - $S \longrightarrow \varepsilon$ is permitted where S is start variable. (No other ε -substitutions permitted).

Right hand side: two variables or one terminal; nothing else. Start variable not on right-hand side of rule.

Theorem

Any context-free language is generated by a context-free grammar in Chomsky Normal Form.

Proof. Any context-free language is generated by a context-free grammar in Chomsky Normal Form

Idea. Given context free grammar G, convert G into Chomsky Normal Form.

- If rule violates Chomsky Normal Form condition: replace with equivalent one that satisfies Chomsky Normal Form condition.
 - A a new start variable
 - Eliminate all ε -rules of form $A \longrightarrow \varepsilon$
 - Eliminate all *units* rules of form $A \longrightarrow B$
 - Convert remaining rules.

Goal. Given context-free grammar $G = (V, \Sigma, R, S)$, convert into context-free grammar $G' = (V', \Sigma, R', S_0)$ in Chomsky Normal Form with L(G) = L(G').

Step 1. Add New Start Variable

Let $S_0 \notin V$. Add new start variable S_0 and rule $S_0 \longrightarrow S$. Start variable in G' not on right-hand side of rule.

Step 2. Eliminate All arepsilon-Rules of Form $A\longrightarrowarepsilon$

Repeat until all ε -rules not involving S_0 are eliminated. Let $A \longrightarrow \varepsilon$, $A \neq S_0$. For each $W \longrightarrow uAv$ and occurrence of A, with u, v strings of variables and terminals. Add new rule $W \longrightarrow uv$. For $W \longrightarrow A$, add $W \longrightarrow \varepsilon$ unless $W \longrightarrow \varepsilon$ was previously removed.

Step 3. Eliminate Unit Rules

Repeat until all units rules are eliminated. Given $A \longrightarrow B$. For each appearance of $B \longrightarrow u$ add $A \longrightarrow u$ (unless this rule was removed previously). As before, u is a string of variables and terminals.

Step 4. Convert Remaining Rules

Replace each rule $A \longrightarrow u_1 u_2 \dots u_k$, where $k \ge 3$ and each u_i is a variable or terminal symbol, with...

• $A \longrightarrow u_1A_1, A_1 \longrightarrow u_2A_2, A_2 \longrightarrow u_3A_3, \dots$, and $A_{k-2} \longrightarrow u_{k-1}u_k$. The A_i 's are new variables.

Replace any terminal u_i and add rule $U_i \longrightarrow u_i$.

Previous Lecture

Lecture08

Next Lecture

Lecture10a