
CSC 320 - Lecture 09
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Coming Up

Context-free grammars, Pushdown automata, Context-free languages.

Context-Free Grammars

They are a more powerful methods to describe languages. First used to study

(describe structure of) human languages. It was invented by Noam Chomsky.

Relationship of terms such as noun, verb, and preposition: natural recursion. Noun

phrases may appear inside verb phrases and vice versa.

Compute Science Application: Specification and Compilation of Programming

Languages.

Grammar for programming language: reference for people learning syntax.

Designing compilers and interpreters: first obtain grammar for language.

Parser: uses grammar to extract meaning of program prior to generating

compiled code.

What's a Grammar? Example!

Grammar 

 consists of

Productions/Rules (Substitution Rules)

Symbols (Variable), Arrow, String (Variables and Terminals)

Terminology: Use capital letters for variables!

We have 3 (substitution) rules, 2 variables: , 3 terminals , start variable: .

What Does A Grammar Do?

G

A⟶ 0A1

A⟶ B

B⟶ #

G

A, B 0, 1, # A



Grammar : , , and 

 describes a language  by generating each string of  as follows...

�� Write down the start variable

Normally variable on the left-hand side of the top rule.

�� Find a variable that is written down and a rule that starts with that

variable. Replace written down variable with right-hand side of that rule.

�� Repeat step 2 until no variable remains.

Example of deriving a string from :

.

What is ?

: set of all strings that can be derived from . Thus, for the example above 

.

Note. We use  for substitutions rules.

Mini Example

: , , and  then the language would be .

Parse Tree for Derivation of 

Parse Tree. Hierarchical representation of terminals and non-terminals. The leaves of

a parse tree are the terminals.

G A⟶ 0A1 A⟶ B B⟶ #

G L L

G

A ⇒ 0A1 ⇒ 00A11 ⇒ 000A111 ⇒ 000B111 ⇒ 000#111

L(G)

L(G) G

000#111 ∈ L(G)

A ⇒ B ⇒ # ∈ L

⇒

L(G) = {0n#1n|n ≥ 0}

G A⟶ 0A1 A⟶ B B⟶ ε L(G) = {0n1n|n ≥ 0}

G

A ⇒ 0A1 ⇒ 00A11 ⇒ 000A111 ⇒ 000B111 ⇒ 000#111



Context-Free Grammars Definition

A context-free grammar is a 4-tuple .

: finite set of variables

: finite set of terminals (disjoint from )

: finite set of (substitution) rules

each rule : a variable substituted by a string over variables and terminals

: start variable

The right hand side of a rule may be 

More Terminology

Given grammar 

Let  and  be strings of variables and terminals, and let  be a rule

of . Then

 yields , written .

 derives , written , if  or if a sequence  exists

for  and 

The language of grammar  is: 

The class of languages described by context-free grammars is the class of context-

free languages.

Note. We do  when we group a bunch of rules together for the derivation.

Examples

(V , Σ, R, S)

V

Σ V

R

R

S ∈ V

ε

G = (V , Σ, R, S)

u, v w A⟶ w

G

uAv uwv uAv ⇒ uwv

u v u ⇒∗
v u = v u1, u2, . . . , uk

k ≥ 0 u ⇒ u1 ⇒ u2 ⇒. . . ⇒ uk ⇒ v

G L(G) = {w ∈ Σ∗|S ⇒∗
w}

⇒∗



Terminology.  short for , , .

Given  with , , and  is given by: 

Then we can derive string  as follows...

Note. The symbol replaced in next derivation step is underlined.

 

  

Examples

Produce a grammar for language 

 with , , .

Examples

Given  with , , and  is given by: 

, , .

Parse Tree For 

Parse Tree For 

S ⟶ (S)|SS|ε S ⟶ (S) S ⟶ SS S ⟶ ε

G(V , Σ, R, S) V = {S} Σ = {(, )} R S ⇒ (S)|SS|ε

(((()()(()))))

S ⇒ (S) ⇒ ((S)) ⇒ (((S))) ⇒ (((SS))) ⇒

((((S)S))) ⇒ ((((S)SS))) ⇒ (((()SS))) ⇒ (((()(S)S))) ⇒ (((()(S)(S)))) ⇒ (((()()(S)))) ⇒

(((()()((S))))) ⇒ (((()()(()))))

{1n0n|n ≥ 0}

G = (V , Σ, R, S) V = {S} Σ = {0, 1} R : S ⟶ 1S0|ε

G = (V , Σ, R, E) V = {E, F , T} Σ = {a, +, ∗, (, )} R

E ⟶ E + T |T T ⟶ T ∗ F |F F ⟶ (E)|a

a + a ∗ a

(a + a) ∗ a



Leftmost Derivations

We call a derivation of string  in grammar  leftmost derivation if at every step

the leftmost remaining variable is replaced.

Ambiguous Grammars

A string  is derived ambiguously in context-free grammar  if it has at least two

different leftmost derivations. Such a grammar is called ambiguous.

Example

Given  with , , and  is given by: 

Two leftmost derivation in 

.

We see that  is derived ambiguously in . Therefore  is ambiguous.

We Learned

What a context-free grammars are, what a language of context-free grammar is, that

ambiguous grammars exist.

Next...

w G

w G

G = (V , Σ, R, E) V = {E} Σ = {a, +, ∗, (, )} R

E ⟶ E + E|E ∗ E|(E)|a

E ⟶ E + E|E ∗ E|(E)|a

E ⇒ E ∗ E ⇒ E + E ∗ E ⇒ a + E ∗ E ⇒ a + a ∗ E ⇒ a + a ∗ a

E ⇒ E + E ⇒ a + E ⇒ a + E ∗ E ⇒ a + a ∗ E ⇒ a + a ∗ a

a + a ∗ a G G



Chomsky Normal Form (CNF). Helps dealing with ambiguity, constraint grammar

rules.

Chomsky Normal Form

Restricted (simplified) constrains on grammar. A context-free grammar 

 is in Chomsky Normal Form if every rule is of the form...

 or  where...

 may not be the start variable.

 is permitted where  is start variable. (No other -substitutions

permitted).

Right hand side: two variables or one terminal; nothing else. Start variable not on

right-hand side of rule.

Theorem

Any context-free language is generated by a context-free grammar in Chomsky

Normal Form.

Proof. Any context-free language is generated by a

context-free grammar in Chomsky Normal Form

Idea. Given context free grammar , convert  into Chomsky Normal Form.

If rule violates Chomsky Normal Form condition: replace with equivalent one

that satisfies Chomsky Normal Form condition.

A a new start variable

Eliminate all -rules of form 

Eliminate all units rules of form 

Convert remaining rules.

Goal. Given context-free grammar , convert into context-free grammar

 in Chomsky Normal Form with .

Step 1. Add New Start Variable

Let . Add new start variable  and rule . Start variable in  not on

right-hand side of rule.

G = (V , Σ, R, S)

A ⇒ BC A ⇒ a

a ∈ Σ

A, B, C ∈ V

B, C

S ⟶ ε S ε

G G

ε A⟶ ε

A⟶ B

G = (V , Σ, R, S)

G
′ = (V

′, Σ, R
′, S0) L(G) = L(G

′)

S0 ∉ V S0 S0 ⟶ S G
′



Step 2. Eliminate All -Rules of Form 

Repeat until all -rules not involving  are eliminated. Let , . For each 

 and occurrence of , with  strings of variables and terminals. Add new

rule . For , add  unless  was previously removed.

Step 3. Eliminate Unit Rules

Repeat until all units rules are eliminated. Given . For each appearance of 

 add  (unless this rule was removed previously). As before,  is a string

of variables and terminals.

Step 4. Convert Remaining Rules

Replace each rule , where  and each  is a variable or terminal

symbol, with...

 and . The 's are new

variables.

Replace any terminal  and add rule .

Previous Lecture

Lecture08

Next Lecture

Lecture10a

ε A⟶ ε

ε S0 A⟶ ε A ≠ S0

W ⟶ uAv A u, v

W ⟶ uv W ⟶ A W ⟶ ε W ⟶ ε

A⟶ B

B⟶ u A⟶ u u

A⟶ u1u2. . . uk k ≥ 3 ui

A⟶ u1A1, A1 ⟶ u2A2, A2 ⟶ u3A3, . . . , Ak−2 ⟶ uk−1uk Ai

ui Ui ⟶ ui


