
CSC 320 - Lecture 08

#pumping-lemma  #regular  #languages

What Is The Pumping Lemma?

It states properties that hold for any regular language.

It Says. For every regular language  there is a positive integer  such that for any

string in  that is of length at least , there is a way to rewrite the string as 

where:

��  for all , that is: ,  (that is given), , , ...

�� , i.e., 

�� , that is substring  cannot contain more than  symbols

Note. It does not tell us the value of , we just know that such a natural number

exists. (  is the pumping value).

Note. Pumping Lemma holds for every regular language.

What Is The Pumping Lemma Good For?

Use pumping lemma as a tool to prove that a certain language  is not regular.

To Prove. We argue by using contradiction.

�� We assume that  is regular

�� Pumping Lemma then guarantees for  that there is a  such that for every

string  of length at least  the three properties hold.

If we can find a string  in that...

is of length at least  but that

does not satisfy all three conditions listed in the pumping lemma, then we know

that  cannot be regular.

Reason. Pumping Lemma holds for every regular language.
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Note. It is crucial what string of length at least  to choose from  to derive a

contradiction.

Not every long string might lead to a contradiction.

But just one string in  of length at least  that does not satisfies the conditions

of the pumping lemma is sufficient to prove that a language is not regular.

When choosing a string as counterexample to pumping lemma, think about

what properties might make the language not regular.

Example

Let . Use pumping lemma to prove  is not regular. (The empty string

is in the language).

Proof by contradiction. Assume that  is regular. Therefore, all properties of

pumping lemma must hold for , i.e.:

If  and  then we can rewrite  with...

�� for each : 

��  (ie, )

�� 

We will choose . Where  is the string that we hope is a counterexample, that

is we must reach a contradiction to the properties of the pumping lemma. For such a

counterexample , length of  must depend on  required.

We confirm.  and  (since ). Therefore (since  is regular is assumed)

pumping lemma guarantees:  can be written as  with  for any 

and...

�� for each : 

��  (ie, )

�� 

Question. Does there exist a rewriting into  for  such that 1., 2., and

3. hold? (Ex. 0...01...1; where 0..0 is of length  and 1...1 is of length ).

We want to rewrite it as ; where .

Our Goal. Show such rewriting does not exist.

Note. Just one rewriting of  that satisfies pumping lemma conditions is sufficient to

show that string  does not serve as counterexample when trying to show that  is
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not regular. Therefore, we consider all cases to rewrite :

Case 1: String  consists of s only.

0...01...1; where  is in 0...0.  (because we pump the number of 's which

results in more 0s than 1s).

String  has more s than s. Therefore , violating condition  of the pumping

lemma. Contradiction.

Case 2: String  consists of s only.

0...01...1; where  is in 1...1.  (because we pump the number of 's which

results in more 1s than 0s).

Just like above the string  has more s than s. Therefore , violating

condition  of the pumping lemma. Contradiction.

Case 3: String  consists of both s and s.

0...01...1; where  is 01.  (because 0...001011...1 ).

String  may have the same number of s and s, but they are out of order (some 

s occur before s). Hence . Contradiction.

Since we cannot rewrite  satisfying the conditions of the pumping lemma,  is not

regular.

We demonstrated. Pumping Lemma can serve as tool to show certain languages

are not regular.

Missing. Proof of correctness for statement of Pumping Lemma.

Correctness of Pumping Lemma (PL)

Plan for Proof. What does  look like? Either...

�� no strings in  are of length at least , or

�� there exist strings in  of length at least .

Case 1: Three conditions hold for all strings of length at least  (therefore for all

strings in  since no strings in  longer than ). (CHECKMARK)

Case 2: Consider properties a DFA has for regular language .
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Let DFA  with  have  states. Let  and . Consider

computation sequence  of states of  when processing input .

Start state, say , followed by sequence of states until reaching end of  in

state, say . Since : : .

If : sequence of states of  computing  has length  with 

.

Therefore, sequence of states computing  must contain at least one repeated

state.

Proof of Pumping Lemma

Show: Can rewrite 

: substring of  appearing processed by  before reaching 

: substring between first two appearance of 

: suffix 
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Note. This uses a famous concept: Pigeon Hole Principle. Fancy name for simple

fact that if  pigeons are placed into fewer than  holes, some hole has to have

more than one pigeon in it.

�� For each : 

Computing  on  implies 

Computing  implies 

Computing  for  implies 

Thus  for 

�� In DFA computation no state can be repeated without processing at least one

symbol (thus if there is a  its length must be greater than 0)

�� Must be among first  states.

 is 

 ? (No!)

Example

Show that   is not regular. We assume 

 is regular. Let  be pumping length given by pumping lemma.

Next. Choose string  to achieve contradiction.

Note. Choice of string -  of length at least  - to derive a contradiction, is

crucial. Not every long string might lead to contradiction.

But. Finding just one string that does not satisfies conditions of pumping

lemma proves language is not regular.
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We choose . Where ; .

PL guarantees that rewriting of  into , satisfies the three conditions. Because of 3,

no matter the rewriting: . ( ) consists only of 0s (and of at least one 0

due to 2). But . Contradiction to 1.

For 0..01...1 where 0...0 is of length  and 1...1 is of length , we know that 

and . But if we do  then we add more 0s but we do not add more 1s.

Example

A possible unlucky choice of  when trying to show that  

 is not regular.

 but it cannot be used successfully to achieve a contradiction using the

pumping lemma! String choice is crucial!

Example

Show that  is not regular.

We assume that  is regular.

 Pumping lemmas guarantees that there is a  with: for all  with 

can be rewritten as  with  and

�� for each : 

��  (ie, )

�� 

Suggestion for counterexample:

We verify:  for , thus  and .

Thus, we show for  that there is no rewriting for  such that the three

properties hold.

Since  and  we know that  is a prefix of , that is  consists of s only,

with . Consider "pumping up"  to .  with . But ,

in contradiction to 1.
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Office Hours

Note. 0110 is not in the language.

Example

Show that  is not regular.

Suggestion. . However, we will use . We know  and  is 1 or

more 0s.  consists of 1 or more 0s but no more than .  consists of no

more than  0s. Let us try...

,  will not work.

 will not work either.

 (  has  0s), . So , . And thus, .
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