
CSC 320 - Lecture 08

#pumping-lemma #regular #languages

What Is The Pumping Lemma?

It states properties that hold for any regular language.

It Says. For every regular language there is a positive integer such that for any

string in that is of length at least , there is a way to rewrite the string as

where:

�� for all , that is: , (that is given), , , ...

�� , i.e.,

�� , that is substring cannot contain more than symbols

Note. It does not tell us the value of , we just know that such a natural number

exists. (is the pumping value).

Note. Pumping Lemma holds for every regular language.

What Is The Pumping Lemma Good For?

Use pumping lemma as a tool to prove that a certain language is not regular.

To Prove. We argue by using contradiction.

�� We assume that is regular

�� Pumping Lemma then guarantees for that there is a such that for every

string of length at least the three properties hold.

If we can find a string in that...

is of length at least but that

does not satisfy all three conditions listed in the pumping lemma, then we know

that cannot be regular.

Reason. Pumping Lemma holds for every regular language.

L p

L p xyz

xyiz ∈ L i ≥ 0 xz ∈ L xyz ∈ L xyyz ∈ L xyyyz ∈ L

|y| > 0 y ≠ ε

|xy| ≤ p xy p

p

p

L

L

L p ∈ N

s ∈ L p

L

p

L

Note. It is crucial what string of length at least to choose from to derive a

contradiction.

Not every long string might lead to a contradiction.

But just one string in of length at least that does not satisfies the conditions

of the pumping lemma is sufficient to prove that a language is not regular.

When choosing a string as counterexample to pumping lemma, think about

what properties might make the language not regular.

Example

Let . Use pumping lemma to prove is not regular. (The empty string

is in the language).

Proof by contradiction. Assume that is regular. Therefore, all properties of

pumping lemma must hold for , i.e.:

If and then we can rewrite with...

�� for each :

�� (ie,)

��

We will choose . Where is the string that we hope is a counterexample, that

is we must reach a contradiction to the properties of the pumping lemma. For such a

counterexample , length of must depend on required.

We confirm. and (since). Therefore (since is regular is assumed)

pumping lemma guarantees: can be written as with for any

and...

�� for each :

�� (ie,)

��

Question. Does there exist a rewriting into for such that 1., 2., and

3. hold? (Ex. 0...01...1; where 0..0 is of length and 1...1 is of length).

We want to rewrite it as ; where .

Our Goal. Show such rewriting does not exist.

Note. Just one rewriting of that satisfies pumping lemma conditions is sufficient to

show that string does not serve as counterexample when trying to show that is

p L

L p

L = {0n1n|n ≥ 0} L

L

L

s ∈ L |s| ≥ p s = xyz

i ≥ 0 xyiz ∈ L

|y| > 0 y ≠ ε

|xy| ≤ p

s = 0p1p s

s s p : |s| ≥ p

s ∈ L |s| ≥ p |s| = 2p L

s s = xyz xyz ∈ L i ≥ 0

i ≥ 0 xyiz ∈ L

|y| > 0 y ≠ ε

|xy| ≤ p

xyz s = 0p1p = xyz

p p

xyz y ≠ ε

s

s L

not regular. Therefore, we consider all cases to rewrite :

Case 1: String consists of s only.

0...01...1; where is in 0...0. (because we pump the number of 's which

results in more 0s than 1s).

String has more s than s. Therefore , violating condition of the pumping

lemma. Contradiction.

Case 2: String consists of s only.

0...01...1; where is in 1...1. (because we pump the number of 's which

results in more 1s than 0s).

Just like above the string has more s than s. Therefore , violating

condition of the pumping lemma. Contradiction.

Case 3: String consists of both s and s.

0...01...1; where is 01. (because 0...001011...1).

String may have the same number of s and s, but they are out of order (some

s occur before s). Hence . Contradiction.

Since we cannot rewrite satisfying the conditions of the pumping lemma, is not

regular.

We demonstrated. Pumping Lemma can serve as tool to show certain languages

are not regular.

Missing. Proof of correctness for statement of Pumping Lemma.

Correctness of Pumping Lemma (PL)

Plan for Proof. What does look like? Either...

�� no strings in are of length at least , or

�� there exist strings in of length at least .

Case 1: Three conditions hold for all strings of length at least (therefore for all

strings in since no strings in longer than). (CHECKMARK)

Case 2: Consider properties a DFA has for regular language .

s

y 0

y xyyz ∉ L y

xyz 0 1 xyz ∉ L 1

y 1

y xyyz ∉ L y

xyyz 1 0 xyyz ∉ L

1

y 0 1

y xyyz ∉ L ∉ L

xyyz 0 1 1

0 xyyz ∉ L

s L

L

L p

L p

p

L L p − 1

L

Let DFA with have states. Let and . Consider

computation sequence of states of when processing input .

Start state, say , followed by sequence of states until reaching end of in

state, say . Since : : .

If : sequence of states of computing has length with

.

Therefore, sequence of states computing must contain at least one repeated

state.

Proof of Pumping Lemma

Show: Can rewrite

: substring of appearing processed by before reaching

: substring between first two appearance of

: suffix

's computation of

M L(M) = L p s ∈ L n = |s| ≥ p

r0r1. . . rn M s

r0 = q0 s

rn = qn s ∈ L rn ∈ F qn ∈ F

|s| = n M s n + 1

n + 1 > p = |Q|

s

s = xyz

x s M q∗

y q∗

z s

M s = xyz

Note. This uses a famous concept: Pigeon Hole Principle. Fancy name for simple

fact that if pigeons are placed into fewer than holes, some hole has to have

more than one pigeon in it.

�� For each :

Computing on implies

Computing implies

Computing for implies

Thus for

�� In DFA computation no state can be repeated without processing at least one

symbol (thus if there is a its length must be greater than 0)

�� Must be among first states.

 is

 ? (No!)

Example

Show that is not regular. We assume

 is regular. Let be pumping length given by pumping lemma.

Next. Choose string to achieve contradiction.

Note. Choice of string - of length at least - to derive a contradiction, is

crucial. Not every long string might lead to contradiction.

But. Finding just one string that does not satisfies conditions of pumping

lemma proves language is not regular.

p p

i ≥ 0 xyiz ∈ L

M xyyz xyyz ∈ L

xz xz ∈ L

xyiz i > 2 xyiz ∈ L

xyiz ∈ L i ≤ 0

y

|y| > 0

p + 1

r0 = q0r2. . . rj = q∗. . . r1 = q∗. . . rn

r0 = q0r2. . . rj = q∗. . . r1 = q∗ l ≤ p + 1

|xy| > p

|xy| ≤ p

L = {w ∈ {0, 1}∗|w has an equal number of 0s and 1s}

L p

s

s ∈ L p

We choose . Where ; .

PL guarantees that rewriting of into , satisfies the three conditions. Because of 3,

no matter the rewriting: . () consists only of 0s (and of at least one 0

due to 2). But . Contradiction to 1.

For 0..01...1 where 0...0 is of length and 1...1 is of length , we know that

and . But if we do then we add more 0s but we do not add more 1s.

Example

A possible unlucky choice of when trying to show that

 is not regular.

 but it cannot be used successfully to achieve a contradiction using the

pumping lemma! String choice is crucial!

Example

Show that is not regular.

We assume that is regular.

 Pumping lemmas guarantees that there is a with: for all with

can be rewritten as with and

�� for each :

�� (ie,)

��

Suggestion for counterexample:

We verify: for , thus and .

Thus, we show for that there is no rewriting for such that the three

properties hold.

Since and we know that is a prefix of , that is consists of s only,

with . Consider "pumping up" to . with . But ,

in contradiction to 1.

s = 0p1p s ∈ L |s| ≥ p

s xyz

|xy ≤ p| => y

xyz ∉ L

p p xy = 0.. .0

y = 0.. .0 xyyz

s L = {w ∈ {0, 1}∗|w

has an equal number of 0s and 1s}

s = (01)p ∈ L

L = {ww|w ∈ {0, 1}∗}

L

⇒ p ∈ N s ∈ L |s| ≥ p : s

s = xyz xyz ∈ L

i ≥ 0 xyiz ∈ L

|y| > 0 y ≠ ε

|xy| ≤ p

s = 0p10p1 = ww s = 0p10p1w = 0p1 s ∈ L |s| = 2p + 2p ≥ p

s = 0p10p1 s = xyz

|xy| ≤ p y ≠ ε xy 0p y 0

1 ≤ |y| ≤ p s xyyz xyyz = 0k10p1 k > p xyyz ∉ L

Office Hours

Note. 0110 is not in the language.

Example

Show that is not regular.

Suggestion. . However, we will use . We know and is 1 or

more 0s. consists of 1 or more 0s but no more than . consists of no

more than 0s. Let us try...

, will not work.

 will not work either.

 (has 0s), . So , . And thus, .

L = {0i1j|i > j}

S = 0p1p−1 S = 0P+11p y ≠ ε y

|xy| ≤ p ⇒ xy p y

p

xyyz = 0k1p k > p

xyyyz

xz = 0p+1−l1p y l 1 ≤ l ≤ p 0k1p k ≤ p xz ∉ L

Previous Lecture

Lecture07

Next Lecture

Lecture09

