
CSC 320 - Lecture 07

#minimization  #DFA  #regular  #non-regular  #languages  #pumping-lemma

Knowledge So Far

Remember. Class of Languages recognized by DFAs  Class of Languages

recognized by NFAs  Regular Languages = Class of Language described by Regular

Expressions.

Knowledge To Come

DFA State minimization (Myhill-Nerode)

Non-regular languages and the Pumping Lemme

If you are given a language that is finite - can you come up with a finite automaton

for it? Yes or No? YES. (Always possible)!

Thus, given a finite language you can always create a finite automaton.

DFA State Minimization

Given a DFA.

Goal. Reduce number of states without changing language recognized.

�� Remove unreachable states (You can do this yourself with graph theory - Graph

Traversal).

�� Identify/Collapse states that yield the same result (maintain determinism).

Note. Mark all the states that we do not want to collapse. And then determine the

sates to join.

What Kind of States Can/Cannot Be Collapsed?

Don't collapse accept and non-accept states.

If there exists a string  and states  such that...

When  is processed starting at state   yields acceptance and

When  is processed starting at state   yields non-acceptance.
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Then do not collapse  and .

State Equivalence

Two states  of DFA  are equivalent (  ~ ) if and only if for all ...

computation of  for  starting at state  ends in accept state if and only if

computation of  for  starting at state  ends in accept state.

Note. It might sound complicated, but it is fairly easy.

State Minimization Algorithm

Let  be a DFA with no inaccessible state.

Write down all pairs  of states in  (initially unmarked).

For each unordered pair : mark  if  and  (or vice versa).

Repeat until no changes occur:

If there exists an unmarked pair  such that  is marked for

some  then mark .

Note. The algorithm produces state equivalence:  unmarked if and only if  ~ .

Example 01

First we write down all pairs  of states in  (initially unmarked).

We will scan through all of them one by one.

p q

p, q M p q w ∈ Σ∗

M w p

M w q

M

{p, q} M

{p, q} {p, q} p ∈ F q ∉ F

{p, q} {δ(p, a), δ(q, a)}

a ∈ Σ {p, q}

{p, q} p q

{p, q} M

{q0, q1} {q1, q2} {q2, q3} {q3, q4} {q4, q5}



For each pair : mark  if  and 

Starting at  we go down our table row by row and mark accordingly. We

mark  as  is an accept state. The same for  and .

Next we go to the following column. We mark , , and .

In column three we mark , , and .

In column four we mark none as they are both in accept states. And same with

column five.

~ ~

~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~

~ ~

Repeat until no changes occur: If there exists an unmarked pair  such that 

 is marked for some  then mark .

We start with . We have  become  which is marked

so we mark . Next we check . We note that 

becomes  thus we also mark.

Next we check  which is  and it becomes  which is

not marked, so we move on. We then check  which becomes 

 which is also unmarked. Thus, we leave it unmarked.

We then check  which is  in both situations and thus we leave

unmarked. The same can be observed for .

Finally we check  which also in both cases is  and thus we also leave it

unmarked.

{q0, q2} {q1, q3} {q2, q4} {q3, q5}

{q0, q3} {q1, q4} {q2, q5}

{q0, q4} {q1, q5}

{q0, q5}

{p, q} {p, q} p ∈ F q ∉ F

{q0, q1}

{q0, q3} q3 {q0, q4} {q0, q5}

{q1, q3} {q1, q4} {q1, q5}

{q2, q3} {q2, q4} {q2, q5}

{q0, q1} {q1, q2} {q2, q3} {q3, q4} {q4, q5}

{q0, q2} {q1, q3} {q2, q4} {q3, q5}

{q0, q3} {q1, q4} {q2, q5}

{q0, q4} {q1, q5}

{q0, q5}

{p, q}

{δ(p, a), δ(q, a)} a ∈ Σ {p, q}

{q0, q1} {δ(q0, 0), δ(q1, 0)} {q1, q3}

{q0, q1} {q0, q2} {δ(q0, 0), δ(q2, 0)}

{q1, q4}

{q1, q2} {δ(q1, 0), δ(q2, 0)} {q3, q4}

{δ(q1, 1), δ(q2, 1)}

{q4, q3}

{q3, q4} {q5}

{q4, q3}

{q4, q5} {q5}



We do a final pass and notice no change and thus we obtain the following.

Note. We will want to program this, because it is very time consuming.

~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~

~ ~

We note the following equivalences...

 ~ 

 ~  ~ 

With this information we can minimize our DFA.

This looks a lot cooler than the initial graph we had, and also you may not have

known that the initial graph could have became smaller at first glance.

Side Question. Could we come up with something else?

Example 02

Remove unreachable state . And then write all the list of pairs.

{q0, q1} {q1, q2} {q2, q3} {q3, q4} {q4, q5}

{q0, q2} {q1, q3} {q2, q4} {q3, q5}

{q0, q3} {q1, q4} {q2, q5}

{q0, q4} {q1, q5}

{q0, q5}

q1 q2

q3 q4 q5

q5

{q1, q2} {q2, q3} {q3, q4}



Mark pairs of states where one state is an accept state and the other one is not.

~ ~ ~ ~

~ ~

Mark pairs of states  where for some  in  on state is an accept

state and the other one is not.

So  is , so we mark. Next,  is  so we mark

as well. And finally,  is  and  is  so we leave

it unmarked.

~ ~ ~ ~ ~ ~

~ ~

~ ~

Note that  ~ . And we can minimize our DFA as follows...

It is not always advantageous to make the automaton smaller. It is dependent on

circumstances.

Note. You could test all of them at once, but it is better to go one by one to avoid

unnecessary computation.

{q1, q3} {q2, q4}

{q1, q4}

{q1, q2} {q2, q3} {q3, q4}

{q1, q3} {q2, q4}

{q1, q4}

{qi, qj} a {δ(qi, a), δ(qj, a)}

{δ(q1, 0), δ(q2, 0)} {q3, q4} {δ(q1, 0), δ(q4, 0)} {q3, q4}

{δ(q2, 0), δ(q4, 0)} {q4, q4} {δ(q2, 1), δ(q4, 1)} {q3, q3}

{q1, q2} {q2, q3} {q3, q4}

{q1, q3} {q2, q4}

{q1, q4}

q2 q4



Regular and Non-Regular Languages

Regular Languages

Recall. The set of regular language is...

The set of all languages recognized by a deterministic finite automata, and also

it is the same as

The set of all languages recognized by nondeterministic finite automate, as well

as it is the same as

The set of all languages described by regular expressions.

Consider the Following Language: Is  Regular?

     .

 must start and end with the same character

Regular Expression: .

In the language: 010, 01100110.

Not in the language: 1001010.

Note. You have to have a finite number of states.

Consider the Following Language: Are , or 

Regular?

  s  s  ????

 ????

  Regular: 

Idea.  would need to be able to keep track of how many s there are and how

many s are allowed. It does not have unlimited memory.  also has the same

problem.

Non-Regular Languages

Recall. Given language  if there exists an FA  with  then  is regular.

L

L = {w ∈ {0, 1}∗|w has an equal number of occurences of 01 and 10 as substrings}

ε ∈ L

0, 1 ∈ L

w ∈ L

ε ∪ 0 ∪ 1 ∪ 0(0 ∪ 1)∗0 ∪ 1(0 ∪ 1)∗1

L1, L2 L3

L1 = {w ∈ {0, 1}∗|w has an equal number of 0 and 1 }

L2 = {0n1n|n ≥ 0}

L3 = {031n|n ≥ 0}⟵ L3 = L(0001∗)

L1 0

1 L2

L M L(M) = L L



Therefore. If a language is non-regular then no finite automaton exists that

recognizes it.

A technique for proving that languages are non-regular: Pumping Lemma.

Pumping Lemma

If  is a regular language, then there is a natural number  (the pumping length)

where:

If  is any string in  of length at least  (i.e., ) (at least as long), then 

 can be divided into  (concatenation) satisfying the following...

�� for each 

��  (i.e., )

�� 

Note.  means the concatenation of  copies of string  

Note. Conditions 1, 2, 3 hold for all strings of length at least  in 

Up Next

Investigate what the pumping lemma is and what it is good for.

Prove why the pumping lemma is correct.

Examples to show that certain languages are not regular, using the pumping

lemma.

Push down automaton. They have a little extra memory, and they have a stack.
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s L p s ∈ L, |s| ≥ p

s s = xyz

i ≥ 0 : xyiz ∈ L

|y| > 0 y ≠ ε

|xy| ≤ p
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