CSC 320 - Lecture 06

#regular #expressions #shrinking #DFA #equivalence-method

Regular Expressions

Remember. Class of Languages recognized by DFAs = Class of Languages recognized by NFAs = Regular Languages.

Claim 2. If a language is regular, then it can be described by a regular expression.

Idea. We know that if *L* is a regular language then *L*₁ is accepted by a finite automaton.

Plan. Describe procedure that converts finite automaton *M* into regular expression.

- Transform = *M* into a *hybrid* automaton *G* between automaton and regular expression(s).
- Shrink until **obtaining regular expression** that recognizes same language as original automaton *M*.

Preparation

Given DFA $M = (Q, \Sigma, \delta, q_0, F)$, create new generalized (nondeterministic finite automaton).

- 1. Add new start state s and ε -transition from s to q_0 .
- 2. *G* has one accept state.
 - 1. Add new accept state *f*.
 - 2. ε -transitions from all states in F to f(L(G) = L(M)).
- 3. Transform label on each transition into regular expression:
 - 1. Eg. If label is a, b change it into $a \cup b$ (language does not change).

For each pair of states q_a and q_b with more than one transition from q_a to q_b , combine to one transition.

For each pair of states q_a and q_b with no transition from q_a to q_b , add a transition and label it with \emptyset .

Generalized Automaton G

G almost like NFA, except:

- Transitions in the state diagram labeled with regular expressions.
- Exactly one start state.
- Exactly one accept state.
- Exactly one transition from every state to every other state (including same state).
 - Exceptions: No transition from accept state, no transition to the start state.

Transforming G Into Regular Expression R

Next we shrink/simplify G:

• Remove states from Q (that is neither s or f), one by one, ensuring that G does not change language it recognizes.

Shrinking

Consider $G = (Q \cup \{s, f\}, \Sigma, \delta, s, f)$

For $q_i,q_j\in Q\cup\{s,f\}$: reg $(q_i,q_j)=R$

• R is regular expression with $\delta(q_i, R) = q_j$.

Choose a state $q_{rip} \in Q$ and transform machine $G = (Q \cup \{s, f\}, \Sigma, \delta, s, f)$ to $G' = (Q', \Sigma, \delta', s, f)$ with $Q' = Q \cup \{s, f\} - \{q_{rip}\}$ and update δ to δ' . (Remove q_{rip}).

- For each $q_i \in Q'$ and $q_j \in Q'$: reg $'(q_i, q_j) = (R_1)(R_2)^*(R_3) \cup (R_4))$ where...
 - $R_1 = \operatorname{reg}(q_i, q_{rip})$
 - $R_2 = \operatorname{reg}(q_{rip}, q_{rip})$
 - $R_3 = \operatorname{reg}(q_{rip}, q_j)$
 - $R_4 = \operatorname{reg}(q_i, q_j)$

Note. We repeat the step until s and f are the only states left.

Note. Transitions labeled with \emptyset not shown.

Example

Note. $b(a \cup b)^* \varepsilon \cup \emptyset$ and $a^*b(a \cup b)^*$

Finishing Up...

Show. Regular expression R labeling transition from s to f is regular expression that describes L(M).

Still To Do. Prove that L(R) = L(M).

- We show that in every step of state removal L(G) = L(G').
- In other words we show that ripping out a state doesn't change the language.

We Show: L(G) = L(G')

Note. $L(G) \subseteq L(G')$

- 1. When removing state q_{rip} : Every string accepted by *G* through transitions that **did not** pass through q_{rip} remains in language.
- 2. Consider string accepted by G via transitions passing through q_{rip} .

- 1. Removing q_{rip} from accepting sequence of states in *G* yields accepting sequence of states in *G*.
 - 1. Let $\ldots, q_i, q_{rip}, \ldots, q_{rip}, q_j, \ldots$ be sequence of states during computation in *G*.
 - 2. reg' (q_i, q_j) includes any substring recognized through \ldots, q_i, q_j, \ldots
 - 3. Thus, \ldots, q_i, q_j, \ldots is accepting computation in G'.

3. $L(G') \subseteq L(G)$

- 1. G' accepts string w
- 2. w accepted by G' corresponds to the concatenation of labels on path in G.
- 3. w must have been accepted by G.

Summary

Theorem. A language is regular if and only if there exists some regular expression that describes it.

1. If a language is described by a regular expression, then it is regular

Regular Expression \longrightarrow DFA \longrightarrow Regular Language

2. If a language is regular, then it can be described by a regular expression.

Regular Language \longrightarrow DFA \longrightarrow GNFA \longrightarrow Regular Expression

Example

Coming Up

- DFA State Minimization (Myhill-Nerode).
- Non-Regular Languages and the Pumping Lemma.

Is There A Systematic Way to Reduce the Number of States in A Finite Automaton?

- **Recall**. Two finite automata are equivalent if they both recognize the same language.
- **Goal**. Find an algorithm that allows us to reduce the number of states of a finite automaton while maintaining its language.
- We can do this for deterministic finite automata.

Note. This only works for DFAs!

Note. You can also use a technique called Equivalence Method to minimize DFAs.

Previous Lecture

Lecture05

Next Lecture

Lecture07