
CSC 320 - Lecture 06

#regular #expressions #shrinking #DFA #equivalence-method

Regular Expressions

Remember. Class of Languages recognized by DFAs Class of Languages

recognized by NFAs Regular Languages.

Claim 2. If a language is regular, then it can be described by a

regular expression.

Idea. We know that if is a regular language then is accepted by a finite

automaton.

Plan. Describe procedure that converts finite automaton into regular expression.

Transform = into a hybrid automaton - between automaton and regular

expression(s).

Shrink until obtaining regular expression that recognizes same language as

original automaton .

Preparation

Given DFA , create new generalized (nondeterministic finite

automaton).

�� Add new start state and -transition from to .

�� has one accept state.

�� Add new accept state .

�� -transitions from all states in to ().

�� Transform label on each transition into regular expression:

�� Eg. If label is change it into (language does not change).

=

=

L L1

M

M G

M

M = (Q, Σ, δ, q0, F)

s ε s q0

G

f

ε F f L(G) = L(M)

a, b a ∪ b

For each pair of states and with more than one transition from to , combine

to one transition.

For each pair of states and with no transition from to , add a transition and

label it with .

Generalized Automaton

 almost like NFA, except:

Transitions in the state diagram labeled with regular expressions.

Exactly one start state.

Exactly one accept state.

Exactly one transition from every state to every other state (including same

state).

Exceptions: No transition from accept state, no transition to the start state.

Transforming Into Regular Expression

Next we shrink/simplify :

Remove states from (that is neither or), one by one, ensuring that does

not change language it recognizes.

Shrinking

qa qb qa qb

qa qb qa qb

∅

G

G

G R

G

Q s f G

Consider

For : reg

 is regular expression with .

Choose a state and transform machine to

 with and update to . (Remove).

For each and : reg where...

 reg

 reg

 reg

 reg

Note. We repeat the step until and are the only states left.

G = (Q ∪ {s, f}, Σ, δ, s, f)

qi, qj ∈ Q ∪ {s, f} (qi, qj) = R

R δ(qi, R) = qj

qrip ∈ Q G = (Q ∪ {s, f}, Σ, δ, s, f)

G′ = (Q′, Σ, δ′, s, f) Q′ = Q ∪ {s, f} − {qrip} δ δ′ qrip

qi ∈ Q′ qj ∈ Q′ ′(qi, qj) = (R1)(R2)∗(R3) ∪ (R4))

R1 = (qi, qrip)

R2 = (qrip, qrip)

R3 = (qrip, qj)

R4 = (qi, qj)

s f

Note. Transitions labeled with not shown.

Example

∅

Note. and

Finishing Up...

Show. Regular expression labeling transition from to is regular expression that

describes .

Still To Do. Prove that .

We show that in every step of state removal .

In other words we show that ripping out a state doesn't change the language.

We Show:

Note.

�� When removing state : Every string accepted by through transitions that

did not pass through remains in language.

�� Consider string accepted by via transitions passing through .

b(a ∪ b)∗ε ∪ ∅ a∗b(a ∪ b)∗

R s f

L(M)

L(R) = L(M)

L(G) = L(G′)

L(G) = L(G′)

L(G) ⊆ L(G′)

qrip G

qrip

G qrip

�� Removing from accepting sequence of states in yields accepting

sequence of states in .

�� Let be sequence of states during computation

in .

�� reg includes any substring recognized through

�� Thus, is accepting computation in .

��

�� accepts string

�� accepted by corresponds to the concatenation of labels on path in .

�� must have been accepted by .

Summary

Theorem. A language is regular if and only if there exists some regular expression

that describes it.

�� If a language is described by a regular expression, then it is regular

Regular Expression DFA Regular Language

�� If a language is regular, then it can be described by a regular expression.

Regular Language DFA GNFA Regular Expression

Example

qrip G

G

. . . , qi, qrip, . . . , qrip, qj, . . .

G
′(qi, qj) . . . , qi, qj, . . .

. . . , qi, qj, . . . G′

L(G′) ⊆ L(G)

G′ w

w G′ G

w G

⟶ ⟶

⟶ ⟶ ⟶

Coming Up

DFA State Minimization (Myhill-Nerode).

Non-Regular Languages and the Pumping Lemma.

Is There A Systematic Way to Reduce the

Number of States in A Finite Automaton?

Recall. Two finite automata are equivalent if they both recognize the same

language.

Goal. Find an algorithm that allows us to reduce the number of states of a finite

automaton while maintaining its language.

We can do this for deterministic finite automata.

Note. This only works for DFAs!

Note. You can also use a technique called Equivalence Method to minimize DFAs.

Previous Lecture

Lecture05

Next Lecture

Lecture07

