
CSC 320 - Lecture 06

#regular  #expressions  #shrinking  #DFA  #equivalence-method

Regular Expressions

Remember. Class of Languages recognized by DFAs  Class of Languages

recognized by NFAs  Regular Languages.

Claim 2. If a language is regular, then it can be described by a

regular expression.

Idea. We know that if  is a regular language then  is accepted by a finite

automaton.

Plan. Describe procedure that converts finite automaton  into regular expression.

Transform =  into a hybrid automaton  - between automaton and regular

expression(s).

Shrink until obtaining regular expression that recognizes same language as

original automaton .

Preparation

Given DFA , create new generalized (nondeterministic finite

automaton).

�� Add new start state  and -transition from  to .

��  has one accept state.

�� Add new accept state .

�� -transitions from all states in  to  ( ).

�� Transform label on each transition into regular expression:

�� Eg. If label is  change it into  (language does not change).
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For each pair of states  and  with more than one transition from  to , combine

to one transition.

For each pair of states  and  with no transition from  to , add a transition and

label it with .

Generalized Automaton 

 almost like NFA, except:

Transitions in the state diagram labeled with regular expressions.

Exactly one start state.

Exactly one accept state.

Exactly one transition from every state to every other state (including same

state).

Exceptions: No transition from accept state, no transition to the start state.

Transforming  Into Regular Expression 

Next we shrink/simplify :

Remove states from  (that is neither  or ), one by one, ensuring that  does

not change language it recognizes.

Shrinking
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Consider 

For : reg

 is regular expression with .

Choose a state  and transform machine  to 

 with  and update  to . (Remove ).

For each  and : reg  where...
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Note. We repeat the step until  and  are the only states left.

G = (Q ∪ {s, f}, Σ, δ, s, f)

qi, qj ∈ Q ∪ {s, f} (qi, qj) = R

R δ(qi, R) = qj

qrip ∈ Q G = (Q ∪ {s, f}, Σ, δ, s, f)

G′ = (Q′, Σ, δ′, s, f) Q′ = Q ∪ {s, f} − {qrip} δ δ′ qrip

qi ∈ Q′ qj ∈ Q′ ′(qi, qj) = (R1)(R2)∗(R3) ∪ (R4))

R1 = (qi, qrip)

R2 = (qrip, qrip)

R3 = (qrip, qj)

R4 = (qi, qj)

s f



Note. Transitions labeled with  not shown.

Example
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Note.  and 

Finishing Up...

Show. Regular expression  labeling transition from  to  is regular expression that

describes .

Still To Do. Prove that .

We show that in every step of state removal .

In other words we show that ripping out a state doesn't change the language.

We Show: 

Note. 

�� When removing state : Every string accepted by  through transitions that

did not pass through  remains in language.

�� Consider string accepted by  via transitions passing through .
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�� Removing  from accepting sequence of states in  yields accepting

sequence of states in .

�� Let  be sequence of states during computation

in .

�� reg  includes any substring recognized through 

�� Thus,  is accepting computation in .

�� 

��  accepts string 

��  accepted by  corresponds to the concatenation of labels on path in .

��  must have been accepted by .

Summary

Theorem. A language is regular if and only if there exists some regular expression

that describes it.

�� If a language is described by a regular expression, then it is regular

Regular Expression  DFA  Regular Language

�� If a language is regular, then it can be described by a regular expression.

Regular Language  DFA  GNFA  Regular Expression

Example
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Coming Up

DFA State Minimization (Myhill-Nerode).

Non-Regular Languages and the Pumping Lemma.

Is There A Systematic Way to Reduce the

Number of States in A Finite Automaton?

Recall. Two finite automata are equivalent if they both recognize the same

language.

Goal. Find an algorithm that allows us to reduce the number of states of a finite

automaton while maintaining its language.

We can do this for deterministic finite automata.

Note. This only works for DFAs!

Note. You can also use a technique called Equivalence Method to minimize DFAs.
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