
CSC 320 - Lecture 04

#languages  #regular  #closure  #DFA  #NFA

Regular Languages

Closure Properties (2)

Theorem. If  and  are regular languages over alphabet  then  is a regular

language.

Proof. Since  and  are regular languages there exists finite automata  and 

with .

Idea. Construct a DFA  that accepts exactly the strings accepted by  and ;

similar to previous proof but need to pay attention what strings must be accepted by

.

Let  and . We construct  as

follows...

.

For each  and each : 

.

 recognizes 

Example

Let 

 is the set of all strings that, after a possible prefix of 1s, consist of at least

one 0 followed by at least one symbol.

 is the set of all strings of length at exactly 1.

 

L1 L2 Σ L1 ∩ L2

L1 L2 M1 M1

L1 = L(M1) and L2 = L(M2)

M M1 M2

M

M1 = (Q1, Σ, δ1, q1, F1) M2 = (Q2, Σ, δ2, q2, F2) M = (Q, Σ, δ, q0, F)

Q = {(r1, r2)|r1 ∈ Q1, r2 ∈ Q2}

(r1, r2) ∈ Q a ∈ Σ δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a))

q0 = (q1, q2)

F = {(r1, r2)|r1 ∈ F1 AND r2 ∈ F2}

M L1 ∩ L2

Σ = {0, 1}

L1 =

L2 =

M1



 

0 1

Start: 

0 1

M2

Q

(q1, q2) (pa, sa) (q1, sa)

(q1, sa) (pa, sb) (q1, sb)

(q1, sb) (pa, sb) (q1, sb)

(pa, q2) (pb, sa) (pb, sa)

(pa, sa) (pb, sb) (pb, sb)

(pa, sb) (pb, sb) (pb, sb)

(pb, q2) (pb, sa) (pb, sa)

(pb, sa) (pb, sb) (pb, sb)

(pb, sb) (pb, sb) (pb, sb)

(q1, q2)

Q

(q1, q2)

(pb, sa) (pb, sa)

(pb, sa) (pb, sa)

(pb, sa)



 

Closure Properties (3)

Theorem. If  and  are regular languages over alphabet  then  is a regular

language.

Proof. Since  and  are regular languages there exist DFA  and  with 

 and .

Idea. Construct a finite automaton  that accepts exactly all the strings of which the

first part is accepted by  and the second part by .

New Idea. Construct a nondeterministic finite automaton  that accepts exactly the

strings where the first part is accepted by first  and the second one by . (We

want to use NFAs)!

Regular Languages Are Closed Under Concatenation

 

 inherits all states from DFAs  and  with...

's start state is 's start state.

's final states are 's final states.

's transitions consists of:

All transitions of 's and all transitions of 's.

-transitions between each state that corresponds to a final state in 

and the state the corresponds to 's start state.

M

L1 L2 Σ L1L2

L1 L2 M1 M2

L1 = L(M1) L2 = L(M2)

M

M1 M2

M

M1 M2

M

M M1 M1

M M1

M M2

M

M1 M2

ε M1

M2



Nondeterminism and Nondeterministic Finite

Automata

Abstraction that allows us to consider extension of ordinary computation.

Simultaneous execution paths are permitted. Strings are accepted if any execution

path is an accepting one.

Proving that regular languages are closed under concatenation: we show this for

nondeterministic fine automata and their corresponding language.

Then we show that the nondeterministic finite automata (NFA) recognize the same

class of languages as deterministic ones: regular languages.

NFA Example

$ 

Note. You do not need to have a transition for each element in the alphabet.

Likewise, you can have multiple transitions for each element in the alphabet.

Note. You can also include a transition to the empty set in your state diagram, but it

is not needed (it is implied).

 with  defined by...

M

M = ({q1, q2, q3, q4}, {0, 1}, δ, q1, {q4}) δ : Q × (Σ ∪ {ε}) → P(Q)

δ 0 1 ε

q1 {q1} {q1, q2} {q4}

q2 {q3, q4} {q4} {q3}

q3 ∅ {q4} ∅

q4 {q4} {q4} ∅



Nondeterministic Finite Automata (NFA)

Transitions go from states to sets of states.

Starting from a state  and reading a symbol  can have transitions into

more than one state.

, where  is the powerset of .

We allow empty transitions ( -transitions).

Do not read any symbol from the input.

Example

NFA  

 with  defined by...

Formal Definition Nondeterministic Finite

Automaton

w1 = 01100

w2 = 0

w3 = ε

q a

δ : Q × (Σ ∪ {ε}) → P(Q) P(Q) Q

ε

M

M = ({q1, q2, q3, q4}, {0, 1}, δ, q1, {q4}) δ : Q × (Σ ∪ {ε}) → P(Q)

δ 0 1 ε

q1 {q1} {q1, q2} {q4}

q2 {q3, q4} ∅ {q3}

q3 ∅ ∅ {q4}

q4 {q4} {q4} ∅



A nondeterministic finite automaton (NFA) is a 5-tuple ) with...

 is a finite set of states.

 is an alphabet.

Function  is the transition function.

 is the start state.

 is the set of accept (or final) states.

NFA Computation

Let  be a NFA and  a string over . Then  accepts 

if we can write  with  and there is a sequence of states 

, such that...

�� 

�� 

�� 

Then  recognizes  if  (same as a DFA).

If a machine  that does not accept any string then  (same as DFA).

NFA Example

 

Input  is accepted by M. (  is a state sequence.) (You could

also have  where we read ).

To show : rewrite 

State sequence for 

 is another sequence of states for  for .

Note. Choosing sequence  for  does not yield acceptance.

(Q, Σ, δ, q0, F

Q

Σ

δ : Q × (Σ ∪ {ε}) → P(Q)

q0 ∈ Q

F ⊆ Q

M = (Q, Σ, δ, q0, F) w = w1w2. . . wn Σ M w

w = y1y2. . . yn yi ∈ Σ ∪ {ε}

r0, r2, . . . , rm ∈ Q

r0 = q0

ri+1 ∈ δ(ri, yi+1)

rm ∈ F

M L L = L(M) = {w ∈ Σ∗|M  accepts w}

M L(M) = ∅

M

w = 1101 q1, q1, q2, q3, q4

q1, q1, q1, q1, q1, q4 1101ε

w ∈ L(M) w = 1ε101

q1, q2, q3, q4, q4, q4

w : q1, q4, q4, q4, q4 w (1101)

q1, q1, q1, q1 w = 1101



NFAs and DFAs

A DFA can be considered a special case of NFA.

Main Difference: definition of a transition function.

Caution: Formal definition is different!

 and  

Note. Make sure you add those  when creating the table!

Definition: Let  and  each be a DFA or NFA. Then we call  and 

equivalent if .

Since NFAs and DFAs produce the same set of languages we know:

The languages recognized by NFAs is exactly the set of regular languages.

First we show. For every DFA there exists an equivalent NFA.

For Every DFA There Exists An Equivalent NFA

Let  be a DFA. Then we can build NFA  with 

 as follows...

 with  for all , .

Equivalence of NFAs and DFAs

Theorem. For every NFA there exists an equivalent DFA.

Proof.

M M ′

{}

M1 M2 M1 M2

L(M1) = L(M2)

M = (Q, Σ, δ, qM , F) N = (Q′, Σ, δ′, qN , F ′)

L(M) = L(N)

Q′ := Q

qN := qM

F ′ := F

δ′ : Q′ × (Σ ∪ {ε}) → P(Q′) δ′(q, a) := {δ(q, a)} a ∈ Σ δ′(q, ε) := ∅



Plan. Given NFA  construct DFA  with 

.

Idea. Build  such that it simulates the computation of .

To not miss any possible computation of  in simulation: when defining 

: create one state for every possible subset of .

Define  for all those states in  and all inputs symbols.

For Now. Ignore -transitions in  (i.e., assume  does not have any -

transitions; we will deal with them later).

Building 

Given NFA  (without any -transitions).

Build DFA ...

.

Definition of 

Let  and ; recall .

.

: the set of all subsets of  that contain final state of .

, that is .

Note. Our construction so far only works for NFAs without -transitions. Thus,

modify construction to also simulate NFAs with -transitions.

Adding -Transitions

Given NFA  (can have -transitions).

Use same construction ignoring -transitions. Then...

For any  let  can be reached from some state in  by traveling  or

more .

Note. This means we include states that we can get to with free hops ( -transitions).

Modify  as follows...

 

Example

NFA  

N = (Q, Σ, δ, q0, F) D = (QD, Σ, δD, qD, FD)

L(N) = L(D)

D N

N QD

Q

δD QD

ε N N ε

D

N = (Q, Σ, δ, q0, F) ε

D = (QD, Σ, δD, qD, FD)

QD := P(Q), qD := {q0}

δD

S ∈ QD a ∈ Σ S ⊆ Q

δD(S, a) := {q ∈ Q|q ∈ δ(s, a) for some s ∈ S}

FD Q F

FD := {S ∈ QD| there exists a q ∈ S with q ∈ F} FD = {S ∈ QD|S ∩ F ≠ ∅}

ε

ε

ε

N = (Q, Σ, δ, q0, F) ε

ε

S ∈ QD E(S) = {q|q S 0

ε-transitions}

ε

D

qD := E({q0})

δD(S, a) := {q ∈ Q|q ∈ E(δ(s, a)) for some s ∈ S} ■

M



The above is a DFA table.

Note. You should draw the failure state in a complete diagram. Bold face states are

accept states.

Didn't We Say We Wanted to Study Problems

and Their Solutions?

QD := P(Q)

qD := E({q0})

δD(S, a) := {q ∈ Q|q ∈ E(δ(s, a)) for some s ∈ S}



A (decision or yes/no) problem is a mapping from a set of problem instances

to Yes/No (called yes-instances and no-instances).

Languages: abstract representation of problems.

For a problem  , the associated language  is 

.

Yes-No-Problems and Their Languages

Examples

Sorted Sequence

Input: A list of  comparable elements .

Question: Are the elements, as given, in sorted order? That is: is it true that 

?

      .

Connected Graph

Input: A simple, undirected graph .

Question: Is  connected? That is: for any pairs of vertices , does there

exists a path from  to  in ?

.

Short Spanning Tree

Input: A simple, undirected, edge-weighted graph  where each edge 

 is assigned a positive integer weight , and integer .

Question: Does there exist a spanning tree  for  where  has

weight at most ? That is:  is a tree, , and ?

   

 .

Previous Lecture

Lecture03

Next Lecture

Π LΠ

LΠ = {x ∈ Σ∗|x is a yes-instance of Π}

n e1, e2, . . . , en

e1 ≤ e2 ≤. . . ≤ en

LSORTED SEQUENCE = {list of comparable elements l | the elements of l are in sorted order}

G = (V , E)

G x, y ∈ V

x y G

LCONNECTED GRAPH = {G = (V , E)|G is a simple, undirected connected graph}

G = (V , E)

e ∈ E w(e) k

T = (V , ET ) G T

k T ET ⊆ E Σe∈ET
w(e) ≤ k

LSHORT SPANNING TREE = {(G = (V , E), k)|k is a positive integer and G

 is a simple, undirected, edge-weighted graph has a spanning tree of weight at most  k}



Lecture05


