CSC 320 - Lecture 02

#languages #countability #automaton #DFA

Alphabets, Languages, Strings, Symbols

How Large is Σ^* ?

Is it finite or infinite. And if it is infinite is it countably infinite or uncountable.

We say that it is countably infinite (and therefore countable)!

Proof. $\Sigma = \{0, 1\}$

\mathbb{N}	Σ^*	
0	ε	
1	0	
2	1	
3	00	
4	01	

Operations and Relations on Strings

- **Concatenation** for strings *x* and *y* yields string *xy*.
 - Concatenation is an associative operation: xyz := (xy)z = x(yz).
 - Eg. If x = ab, y = bac, and z = bba, then xyz = abbacbba.
- String v is a **substring** of string w if and only if there are strings x and y such that w = xvy.
 - We note that x and y can be the empty string.
 - If $x = \varepsilon$, then w = xv and v is called **suffix** of w.
 - If $y = \varepsilon$, then w = vy and v is called **prefix** of w.
 - Eg. If w = abbacbba, then cbba is a suffix of w and abb is a prefix of w.
- A string w written backwards is denoted w^R and called the reversal of the string w.
 - Eg. If w = abbacbba, then $w^R = abbcabba$.

Languages

- A **language** is a set of strings over an alphabet Σ.
 - Set operations apply to languages (eg., union, intersection, set difference).
- For a language L over alphabet Σ , its **complement** is $\Sigma^* L$, denoted \overline{L} .
- Given languages L₁ and L₂ over alphabet Σ, their concatenation, denoted L₁L₂ is defined by...
 - $\bullet \ \ L_1L_2=\{w\in \Sigma^*|w=xy \text{ for some } x\in L_1 \text{ and } y\in L_2\}$
- The **Kleene star** *L*^{*} of a language *L* is the set of all strings obtained by **concatenating zero or more strings** from *L*:
 - $\bullet \hspace{0.2cm} L^{*} = \{w \in \Sigma^{*} | w = w_{1}w_{2} \dots w_{k}, k \geq 0 \hspace{0.1cm} ext{and} \hspace{0.1cm} w_{i} \in L \hspace{0.1cm} ext{for} \hspace{0.1cm} 1 \leq i \leq k \}$
- Given a language L over alphabet Σ , the closure L^+ of L is $L^+ = LL^*$
 - L⁺ is smallest language that includes L and all strings that are concatenations of strings in L.

Example

$$Z = \{0, 1\} \qquad L = \{0, 0, 0\} \qquad L = \{0, 0\} \qquad$$

Note. They are all even. They can also never start with 1. ε is not in *L*, so it can be in L^* .

Observations

Let Σ be an alphabet. Then for any language L over Σ : $L \subseteq \Sigma^*$ and $\bar{L} \subseteq \Sigma^*$

How Large is the Set of All Languages over Σ ?

Recall. Σ^* is countably infinite (and therefore countable) and that languages are subsets of Σ^* .

Then the **set of all languages** is the set of all subsets of Σ^* : $\mathcal{P}(\Sigma^*)$.

Any language *L*, *L* is countably infinite or finite.

How large is the set of all languages over an alphabet Σ ?

Cardinality of the set of all languages equals cardinality of $\mathcal{P}(\Sigma^*)$: $|\mathcal{P}(\Sigma^*)|$

What does $|\mathcal{P}(\Sigma^*)|=?$

- Idea. Show that the powerset of any countably infinite set is uncountable. This would imply that the powerset $\mathcal{P}(\Sigma^*)$ is uncountable.
- **Recall**. Any countably infinite set has a bijection with ℕ, that is Σ* has a bijection with ℕ.
- Therefore, if we show that $\mathcal{P}(\mathbb{N})$ is uncountable then we know that $\mathcal{P}(\Sigma^*)$ is uncountably infinite.

$|\mathcal{P}(\Sigma^*)|$ is uncountable

Proof by Contradiction

Goal. Define a subset that should be on the list but is not.

Assume that $\mathcal{P}(\mathbb{N})$ is **countably infinite**. We list every subset of \mathbb{N} as S_0, S_1, S_2, \ldots such that every subset of \mathbb{N} is equal to a subset S_i for some *i*.

Next we define the subset $D \subseteq \mathbb{N} : D = \{i \in \mathbb{N} | i \notin S_i\}$. For each $j \in \mathbb{N}$, $j \in D$ if and only if $j \notin S_j$. Since $D \subseteq \mathbb{N} : D$ is on the list and there exists j with $S_j = D$.

- If $j \in D$ then $j \notin S_j = D$.
- If $j \notin D$ then $j \in S_j = D$.

That is, $j \in D$ if and only if $j \notin D$. Thus D cannot be a subset of \mathbb{N} .

Thus we obtain a contradiction (we used diagonalisation to achieve contradiction)!

Recap. Since $\mathcal{P}(\mathbb{N})$ is uncountably infinite, the powerset of any countably infinite set is uncountable. Since the set of all languages is the powerset of Σ^* , the set of all languages is uncountable.

Finite Automata and Regular Languages

Automata Theory: Finite Automata & Regular Languages. Pushdown Automata & Context-Free Languages.

- Understanding **computability** requires: models of a computer that capture its computational power.
- Most simple model: **finite state machine** or **finite automaton**. Model of computation with **finite amount of memory**, independent of problem size.

Finite Automata in Practice

- Automatic door controller: a finite automaton/computer with just a single bit of memory that records which of the two states the controller is in (closed or open).
- Many other common devices have controllers with somewhat larger memories.
- **Elevator Controller**: state represents floor elevator is on and inputs signals received from the buttons.
- **Controllers for Various Household Appliances**: dishwasher, electronic thermostats, parts of simple digital watches, and simple calculators.
- Other Applications: pattern recognition, speech recognition, optical character recognition, compilers, a (probabilistic) relative of the finite automaton (Markov Chain).

Abstract Description of the Finite Automaton

- State Diagrams: used to describe finite automata.
- Formal Definition: Deterministic Finite Automaton.

State Diagram

The states are $\{q_1, q_2, q_3, q_4\}$. The start state is q_1 . The accept state is q_3 .

- Transitions: arrows from one state to another (according to received inputs).
- Inputs (labels on transition): symbols from alphabet.

The above DFA accepts 11011 since it is in an accept state at the end of reading/processing of input string. The string processes until the end of the string. It doesn't stop at the first encounter of accept state. 0 is, but 00 is not.

Practice: How to explain what can and can't be included.

Formal Definition Deterministic Finite Automaton

A deterministic finite automaton (DFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ with...

- 1. *Q* is a finite set called the **states**.
- 2. Σ is a finite set called the **alphabet** (alphabet must always be finite).
- 3. Function $\delta: Q \times \Sigma \rightarrow Q$ is the **transition function**.
- 4. $q_0 \in Q$ is the **start state**. (Unique).
- 5. $F \in Q$ is the **set of accept** (or **final**) **states**. (Multiple).

Note. The **Transition Function** must be well defined: for each state there are as many outgoing transitions as symbols in the alphabet.

Eg. $(\{q_1, q_2, q_3, q_4\}, \{0, 1\}, \delta, q_1, \{q_3\})$ with $\delta: Q \times \Sigma \rightarrow Q$ defined by...

Transition Table:

δ	0	1
q_1	q_3	q_2
q_2	q_4	q_3
q_3	q_1	q_2
q_4	q_4	q_3

OR defined as... $\delta(q_2, 0) = q_4$.

Examples

Z = {0}

 $\mathcal{S}(q_1, \sigma) = q_1$

Start State: 9,

$$C = (Q, \Sigma, S, q_0, F)$$

$$Q = \{Q_1, Q_2\}$$

$$\Sigma = \{Q_1, Q_2\}$$

$$\Sigma = \{Q_1, Q_2\}$$

$$S(Q_1, Q) = Q_1$$

$$S(Q_1, Q) = Q_1$$

$$S(Q_1, Q) = Q_2$$

$$S(Q_2, Q) = ?$$

$$S(Q_2, Q) = ?$$

$$S(Q_2, Q) = ?$$

Note. Example C Part 1 one isn't valid because q_2 doesn't have any outgoing arrows for all elements Σ .

Note. This one isn't valid because there are two options for 1 going out of q_1 . And we can't have two possibilities in a DFA.

Language of a Deterministic Finite Automaton

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA and A be the set of all strings that M accepts:

- A is called the **language of machine** M.
- L(M) = A.
- *M* recognizes language *A*.

Note. A machine that accepts no string still recognizes a language: **empty language** Ø. (This is very important)!

Example

Let $L(M) = \{w | w \in \Sigma^* \text{ of length at least 1 where: if } w \text{ starts with symbol 1 then } w \text{ is of length at least 2} \}.$

 $(\{q_1,q_2,q_3,q_4\},\{0,1\},\delta,q_1,\{q_3\})$ with $\delta:Q imes \Sigma o Q$ defined by...

Transition Table:

δ	0	1
q_1	q_3	q_2
q_2	q_3	q_3
q_3	q_3	q_3

Previous Lecture

Lecture01

Next Lecture

Lecture03