
CSC 320 - Lecture 02

#languages  #countability  #automaton  #DFA

Alphabets, Languages, Strings, Symbols

How Large is  ?

Is it finite or infinite. And if it is infinite is it countably infinite or uncountable.

We say that it is countably infinite (and therefore countable)!

Proof. 

0

1 0

2 1

3 00

4 01

... ...

Operations and Relations on Strings

Concatenation for strings  and  yields string .

Concatenation is an associative operation: .

Eg. If , , and , then .

String  is a substring of string  if and only if there are strings  and  such

that .

We note that  and  can be the empty string.

If , then  and  is called suffix of .

If , then  and  is called prefix of .

Eg. If , then  is a suffix of  and  is a prefix of .

A string  written backwards is denoted  and called the reversal of the string

.

Eg. If , then .
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Languages

A language is a set of strings over an alphabet .

Set operations apply to languages (eg., union, intersection, set difference).

For a language  over alphabet , its complement is , denoted .

Given languages  and  over alphabet , their concatenation, denoted 

is defined by...

The Kleene star  of a language  is the set of all strings obtained by

concatenating zero or more strings from :

Given a language  over alphabet , the closure  of  is 

 is smallest language that includes  and all strings that are

concatenations of strings in .

Example

Note. They are all even. They can also never start with .  is not in , so it can be in 

.

Observations

Let  be an alphabet. Then for any language  over :  and 

How Large is the Set of All Languages over  ?

Recall.  is countably infinite (and therefore countable) and that languages are

subsets of .
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Then the set of all languages is the set of all subsets of : .

Any language ,  is countably infinite or finite.

How large is the set of all languages over an alphabet  ?

Cardinality of the set of all languages equals cardinality of 

What does 

Idea. Show that the powerset of any countably infinite set is uncountable. This

would imply that the powerset  is uncountable.

Recall. Any countably infinite set has a bijection with , that is  has a bijection

with .

Therefore, if we show that  is uncountable then we know that  is

uncountably infinite.

 is uncountable

Proof by Contradiction

Goal. Define a subset that should be on the list but is not.

Assume that  is countably infinite. We list every subset of  as 

such that every subset of  is equal to a subset  for some .

Next we define the subset . For each ,  if and only if

. Since  is on the list and there exists  with .

If  then .

If  then .

That is,  if and only if . Thus  cannot be a subset of .

Thus we obtain a contradiction (we used diagonalisation to achieve contradiction)!

Recap. Since  is uncountably infinite, the powerset of any countably infinite set

is uncountable. Since the set of all languages is the powerset of , the set of all

languages is uncountable.

Finite Automata and Regular Languages

Automata Theory: Finite Automata & Regular Languages. Pushdown Automata &

Context-Free Languages.
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Understanding computability requires: models of a computer that capture its

computational power.

Most simple model: finite state machine or finite automaton. Model of

computation with finite amount of memory, independent of problem size.

Finite Automata in Practice

Automatic door controller: a finite automaton/computer with just a single bit of

memory that records which of the two states the controller is in (closed or

open).

Many other common devices have controllers with somewhat larger memories.

Elevator Controller: state represents floor elevator is on and inputs signals

received from the buttons.

Controllers for Various Household Appliances: dishwasher, electronic

thermostats, parts of simple digital watches, and simple calculators.

Other Applications: pattern recognition, speech recognition, optical character

recognition, compilers, a (probabilistic) relative of the finite automaton (Markov

Chain).

Abstract Description of the Finite Automaton

State Diagrams: used to describe finite automata.

Formal Definition: Deterministic Finite Automaton.

State Diagram

The states are . The start state is . The accept state is .

Transitions: arrows from one state to another (according to received inputs).

Inputs (labels on transition): symbols from alphabet.

The above DFA accepts 11011 since it is in an accept state at the end of

reading/processing of input string. The string processes until the end of the string. It

doesn't stop at the first encounter of accept state. 0 is, but 00 is not.

Practice: How to explain what can and can't be included.

{q1, q2, q3, q4} q1 q3



Formal Definition Deterministic Finite

Automaton

A deterministic finite automaton (DFA) is a 5-tuple ( ) with...

��  is a finite set called the states.

��  is a finite set called the alphabet (alphabet must always be finite).

�� Function  is the transition function.

��  is the start state. (Unique).

��  is the set of accept (or final) states. (Multiple).

Note. The Transition Function must be well defined: for each state there are as

many outgoing transitions as symbols in the alphabet.

Eg.  with  defined by...

Transition Table:

OR defined as... .

Examples

Q, Σ, δ, q0,F

Q

Σ

δ : Q ×Σ → Q

q0 ∈ Q

F ∈ Q

({q1, q2, q3, q4}, {0, 1}, δ, q1, {q3}) δ : Q ×Σ → Q

δ 0 1

q1 q3 q2

q2 q4 q3

q3 q1 q2

q4 q4 q3

δ(q2, 0) = q4





Note. Example C Part 1 one isn't valid because  doesn't have any outgoing arrows

for all elements .

Note. This one isn't valid because there are two options for 1 going out of . And we

can't have two possibilities in a DFA.

Language of a Deterministic Finite Automaton

Let  be a DFA and  be the set of all strings that  accepts:

 is called the language of machine .

.

 recognizes language .

Note. A machine that accepts no string still recognizes a language: empty language 

. (This is very important)!

Example
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L(M) = A

M A

∅



Let  of length at least 1 where: if  starts with symbol 1 then  is of

length at least 2 .

 with  defined by...

Transition Table:

Previous Lecture

Lecture01

Next Lecture

Lecture03

L(M) = {w|w ∈ Σ∗ w w

}

({q1, q2, q3, q4}, {0, 1}, δ, q1, {q3}) δ : Q ×Σ → Q

δ 0 1

q1 q3 q2

q2 q3 q3

q3 q3 q3


