
CSC 320 - Lecture 01

#intro  #classical-computing  #languages  #countability

What's That? (Foundations of Computer

Science)

Study fundamental nature of (classical) computation.

What problems are solvable using a computer?

Note. In our context, solving a problem means: answer the question posed

in the problem exactly.

Note. We are are saying classical in this case because quantum computing is

becoming stronger.

We need to know answers to...

What exactly is a problem?

What exactly is a solution to a problem?

How do we model a computer?

Course Topics

Formal definitions of computations, languages and computability.

Models of computation:

Finite Automata, Pushdown Automata, Turing Machines.

Grammars.

Deterministic and Non-Deterministic Machines.

The Halting Problem:

Reductions.

Intractability:

NP-hardness, Completeness.

Polynomial-Time Reductions.

Dealing with Intractability or Quantum Computing. (Dr. Ulrike's field of research

and interest).

Learning Outcomes



An understanding of the following...

What are the fundamental capabilities and limitations of computers?

What makes some problems computationally hard and others easy?

Topics discussed are in the following areas...

Automata Theory

Computability Theory (Computational models from three perspectives).

Complexity Theory

Goals

Are there any problems that --no matter how powerful the computer/no matter

how much time you have-- your computer would not not be able to solve?

Is it decidable (i.e., is there a computation that allows us to decide), in Conway's

Game of Life, whether given an initial pattern and another pattern, the latter

pattern can ever appear when starting from the initial one?

Is it decidable, given a finite set of tile types, to determine whether there is an

arrangement of them with the adjacent sides matching that tiles the plane?

(The Tiling Problem).

Is it possible to design an algorithm that is the perfect antivirus software, that is

a software that decides for any current or future software whether or not the

software can act like a virus?

Is it possible to design a perfect debugger (an algorithm that that, among other

bugs, catches infinite loops)?

Is there an algorithm that schedules exams over a limited time period, such that

no student is scheduled to take two or more exams at the same time? (Solvable,

BUT not easy).

Note. If the answer is yes to one or more such questions, we ask whether there

exists an algorithm that is tractable, that is it returns the solution in an acceptable

amount of time.

There are big but unachievable goals such as universal debuggers, universal

interpreters, and universal malware detectors.

Questions

If at all, what type of problems can humans solve of the ones that are not

solvable by (classical) computers?

Can computers (eg., robots, conversational agents) act as humans?

What problems can and what problems cannot be solved? What problems can

be solved but are hard? What problems are easy?



Automata Theory: Examples of Automata

Finite Automata: Used in text processing, compilers, hardware design,

appliances, candy machines, and ...

Pushdown automate (or context-free grammars): Used in programming

languages, and artificial intelligence.

Turing Machines: Model of our "conventional" computer (Smart Phone,

Computer, and ...).

Terminology

Unsolvable or undecidable: problems not solvable using our (standard)

computing model (independent of resource limitations).

Easy to solve: problems solvable in polynomial time (using our standard

computing model).

Hard to solve: problems solvable (in theory, using our standard computing

model) but (likely) not solvable in polynomial time (using our standard

computing model).

Conway's Game of Life

Conway's Game of Life is an example of a cellular automaton. Played on an infinite

two-dimensional rectangular grid of cells each cell can either be alive or dead. The

initial pattern is considered the first generation.

The status of each cell  changes each turn of the game (generation) depending on

the statuses of 's (eight) neighbours.

The next generation evolves from applying given rules simultaneously to every cell

on the game board.

You can try it out here https://playgameoflife.com.

Conways's Game of Life Rules

If the cell is alive, then it stays alive if it has either exactly 2 or exactly 3 live

neighbours.

If the cell is dead, then it is "born" only if it has exactly 3 live neighbours.

Turing Machines, the Turing Test, and

Conversational Agents

c

c

https://playgameoflife.com/


The Turing Test developed by A. Turing (1950).

First Conversation Agent ELIZA by J. Weizenbaum (1966).

IBM Watson Jeopardy, Alexa, Siri, Google Assistant, Cortana, Chatbots, and

...

Today's Theory of (Classical) Computation

Today it is based on the Church-Turing Thesis. (Any real-world computation can be

translated into an equivalent computation involving a Turing Machine). We ignore

resource constraints (time, space). (Questions of 2018).

Turing Machine: Abstract Model of Computer.

Note. Does Quantum Computing add computational power? (Questions of 2022).

(There is no serious problem in theoretical computer ability between a quantum

computer and a classical computer. Definitely everything you can solve in a classical

computer can theoretically be solved in the quantum computer).

We assume that any problem that can be computed can be translated into a Turing

Machine Computation. Then... there must be a Turing Machine Computation for every

problem that we can compute.

What if there are more problems that we would like to compute than there are

Turing Machine Computations? Then, there would be problems that are not

computable by a Turing Machine. (ex., Halting Problem).

To know how many different problems or Turing Machine Computations there are,

we need to know how to count sets, and how to determine sets that are

uncountable.

Countable and Uncountable

A set is countable if it is finite or countably infinite: the elements of a

countable set can always be counted one at a time; every element of the set is

associated with a unique natural number.

There exists a bijection between any countably infinite set and the set

of natural number .

There exists a bijection between any finite set and a finite subset of .

A set that is neither finite nor countably infinite is uncountable.

Counting the Set of All Integers 

N

N

Z



0 0

1 -1

2 1

3 -2

... ...

The idea behind this is that even numbers are mapped to positive numbers and odd

numbers are mapped to negative numbers.

Counting the Set of All Integers 

We can enumerate all rational numbers without getting stuck in infinity. The

enumeration algorithm above defines bijection with . Counting row by row (or

alternatively column by column) would never reach all numbers - since we never

leave the first row (column).

Note. No number is left behind ;)

The Set of Real  Numbers is Uncountable

We show that it is impossible for the set of real numbers  to be countable.

Idea. Pick a particular infinite (sub)set  can be enumerated.

Show. There exists a real number that should be in  but it not.

Consequence. There is no list that enumerates all real numbers (since we

already cannot enumerate ) and therefore we cannot enumerate .

Cantor's Diagonalisation Argument
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Using the technique proof by contradiction, we assume:  is countable.

If  is countable then we can enumerate, eg, the set of all real numbers between 0

and 1:

Where  is a digit.

Now consider the number  with  for each .

Clearly, . Is  in above list?

So...  ? No: . Thus, , , , , . And, ....

So, .

Answer. No!  is not in the list as it is different from each list element!

Therefore, since , the list does not contain all real numbers between 0 and 1.

Is we cannot even enumerate this subset of , then it is also impossible to enumerate

.

Note. Hilberts Hotel an Ingenious Explanation of Infinity.

Terminology Review

A big part of this course is about Automata and Turing Machines, and their

Languages as well as their computational power and limitations.

Sets

Set: 

Objects in a set: elements/members. Each element is unique!

Memberships/Non-Membership: 

Empty Set: , or 

Set with zero members/elements.

Singleton Set: Set with exactly one member.

Unordered Par: Set with exactly two members.

Set Operations

R
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x1 = 0.d11d12d13d14. . .
x2 = 0.d21d22d23d24. . .
x3 = 0.d31d32d23d34. . .
x4 = 0.d41d42d43d44. . .
. . .
xn = 0.dn1dn2dn3dn4. . .

d

c = 0.c1c2c3c4. . . ci ≠ dii i

0 ≤ c ≤ 1 c

c = xi c1 ≠ d11 c ≠ x1 c ≠ x2 c ≠ x3 c ≠ x4 c ≠ xn c = 0.c1c2c3c4

ci ≠ dii

c = 0.c1c2c3c4. . .

0 ≤ c ≤ 1

R

R

S = {3, l, 20, green,α}

α ∈ S;β ∉ S

∅ {}



Union of sets  and : 

Intersection of sets  and : 

Complement of set :  (or )

Set Difference of sets  and : 

Powerset

Powerset  is the set of all subsets of . . We

remember that .

Alphabets, Languages, Strings, Symbols

Terminology to describe and work with finite automata...

An alphabet  is a finite set of symbols (eg., Binary alphabet {0, 1} or the

Roman/Latin alphabet). (An alphabet will never be infinite).

A string over an alphabet  is a finite sequence of symbols from  (ex., 001 is a

string over alphabet {0, 1} = ). (A string is always finite).

The empty string  is the string with no symbols (we note that it is a string not

an empty set)!

The set of all strings over an alphabet  in denoted  (remember that 

and  is infinite).

Example

Let . Then  (i.e., infinite

size).

The length  of a string  is the number of symbols of  when considered

as sequence (eg., length of the empty string  and ).

For a string , the symbol in the  position of  is denoted . We say that 

 occurs in position  of  (note that a symbol may occur more than once in the

same string (eg., ;  = b)).

Next Lecture

Lecture02

A B A ∪ B = {x|x ∈ A or x ∈ B}

A B A ∩ B = {x|x ∈ A and x ∈ B}

A Ā = {x|x ∉ A} A ⊆ U = δ ∈ U |x ∉ A}

A B A − B = {x ∈ A : x ∉ B}

P(A) of set A A P(A) = {S|S ⊆ A}

∅ ∈ P(A)

Σ

Σ Σ

Σ

ε

Σ Σ∗ ε ∈ Σ∗

Σ∗

Σ = {a, b} Σ∗ = {ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, bab, bbb, . . . }

|w| w ∈ Σ∗ w

ε : |ε| = 0 w = ab : |w| = 2

w ∈ Σ∗ ith w wi

wi i w

w = aba w2


