

September 9" 2021 Lecture 1-

fin) -- n' Properties of Big - O^

f-(Rtg)
gin)

= 5in Suppose fln) -_ Main)) ad gln) -- Hbcn))
Fcn) =D (gin)) > c > o

i >
for all nbigenayhmdfxsonecsn.nl enayn Sum : Fcn)-1g(n)

= Main) +bin))

no n Fcn) is at least a constante times gin) Product : Fcn) . ylh)
= Olaln) - bln))

Fln) > cgln) Constant multiplication: Cfln) : Olaln))
transitait : fin) = 01g(n)) and gin)

-
- Olhln))

F E O (g) fin) -- 01h1m)

.

" ""

""""" Max degree : Fcn) -_ a. + a.n + . . .+ aand > fin) = Un")
:

i.
Fln) £ O(g (n)) Polynomial is subexponentiel : d > O ' n' = Nan) ,

a > 1

i Polylogarithme is subpolynomial : d > O ' Ilyn)
"
= Mnt)

, r
> 0

; ,
""↳⇒ *. ..

no h enough fin) is at mosta constante

times gin) . Fcn) 1- cgln)
little -0 :

"

thgrowth of if is notting compared to

zgln)
th growthofg

"

.

JE ?⃝ (g)
% gcn) fin)

Un) t ④ Lg(n))
limans

gin,
= 0

little - omega:
"

thgrowth off is sticky dominatorµÇl g. anyway ,
, ,, .gg,, ,, ,

µ yay, g. y ,

, ,

-
Sam rate

,
i.e. C

, , Ca
> 0

. . -

fcn)
c. gln) t Fcn) ± czgln) linn-so gin)

= °

A. Aa
. . . An an algorithm? :

> standard

A
, Aa ;; dotprodtnucth ⇒ 01ms)
"

mxm matrices m
'

Consider : 3×500,500×2 ,
and 2×2000

(A
,
Az) A] = 3.500.2 1- 3.2.2000 = 15000

(A)(A ,A,) = 500.2-2000+3.500.2000=10
"

Complexity :
Time : Has fost does th algorithm run ?

Space : Hou much (extra) Space does th algorithm require?

Note: time Complexity typica'y is love banded by Space Complexity.

types 0f Analysa
) Empirical Method : Complexity measured by number of cycles , using instrumentation and profiling.
2) The Theoretical Method: Complexity measured by number of primitive Operations , using math and Theoretical Computer science .

> Derive upper and lower band, on Complexity

time Complexity Analysa

(omphxity as a function of input size
Measured in terms of number of primitive Operations
Wurst case

,
best case

, average case

Abstract
my to mympbtic behari our arder of granth

for récursive analyses De th master Thoren

Note: When Ding primitive opérations model of Computation , we will implicithg Moune that a Word contains Olloy n) bits ,
À input size n .

September B" 2021 (Lecture 2

Example :
7- G- =

,
E

lo l = u
,
v E E

, UE i VE

9

4

8 12 8

5

8

example 1

Complete graph =3 Incomplète graph

K
,

Ky
4

a
= 4

'

d' (4-2)
'

= 403 = 6

2

Simple Graph

A simple graph is a graph w / no multi - edges and no self- bop

ex ,
ex - ex .

Representing Graphs n=

(Adjacencyhist Representation :

An array Adj of lists for UE
, Adj u contains list of all

tertius vif v.v Et

ex.
'

"

Adj
Space:O ✓ + E

1 > 3 > 2 > 4 > BB null
a 3

2 .) 1) 3 > Hh null

3 > 2 > 1) M null

4) l) BR null

A Weighted graph is a graph I. for each edge (u.v) ,
there is

a.Weight
wlu

,
r)

.

Weight function

Weight ed Version of Adj . W : x ' IR

') (3,10)) (2,11) > 14,7) > MM null

J ° o o

] o o o

Q u o e

,
7 4

" 10

2 8 3

(2) Second Representation :

Adjacences Matrix A of size V × V such that

aij
= {

1- if (i , ;) C- E

O O-
W

.

Or

Ueiyhted graph aij
= { Hij) if (i ,;) -CE° if (i

,j) E E

I

ex
.

,

'°

2 A 10 7

10 0 A

3 7 00

Definition Spanning Tree

TEE is a spanning tree
of G- = V

,
E if KT is a cycle and and is Connected .

A graph (G-= (V.E) is Connected if u
,
r E V there is a path from a for using

edges in E .

Definition Cycle Propertg
for

any cycle I in the graph ,
if th weight of an edge e of C is larger than th individuel

Weight, of all other edges of C ,
Hen this edge cannot belang to an MST .

* Somethin doesn't belong in th MST
.

Definition MST

Let G- be weiqhted graph .
Ne
say

T Minimum Weight spanning Tree if T is spanning Tree and
its Weight WH) : =L wlu.ir) is th minimum among all spanning Trees .

→ spanning Tree T z W (j
') = /4+7+12

H u
r

) H
= 33

la
12

MST T
7

3

8

12

Definition cut
subfree

A cut S
,
V
'

s of undirected graph G- = (KE) is a partition of into two non- complet sets .

Legend

E S

E V S

Definition Crosiny Edge
An edge u, r E E crosses the cut S

,

V S if one vertex is in S and
th other one is in V S

.

Algorithm Idea Assumption All edge Weight> are distinct
.

Start with A = 0 = { }
. Nishantsay fait . Assumption

Incrémental} , add an edge that belongs to Msi T
. Unique MST ,

" the
"

Mst

cut Properties Thoren

t.ets.rs be a cut and Iet e = un be min cost edge that crosses that
.

then edge e belongs to th Mst
.

$ Somethin
]
does belang in Mst.

September 16" 2021 (Lecture 3)

Cut Properties Thoren

Let (S , V S) be a cut and /et e-- tu
,
v1 C- E be a minimum Weight Crossing edge for It out .

The the MST contains e .

i. e . e is a
"

safe edge
"

Proof (Exchange Argument)

Suppose the MST T doesn't contain e (e E T) .
50

,
since T is spanning Tree

,
there is path P from u to V.

Let T' = Tu { e }
.

So
, there is cycle in T !

Lett
"

= T' { e} . Since broker cycle .
T
"

is spanning Tree .
" WH

")
= NA) - w (e ') + u (e)

s

l'm
WE)

T } .

§
,

-

ë

g

Greedy MST Algorithm

A = O for j =
> V -

Find a cut (S, V S) st no edge in A cross cut e .

Add minimum Weight crossing edge e for that cut
.

Al Au { e}

Primes Algorithm

A = O while A -

I find edge (air) of minimum Weight that Connect> A to an isolated vertex .

2) Ai Au {un } .
g

%

Example cut used
- - -

- -
-

by Primes Algorithm .

Proof

In each itération /et cut bespecif.ec/.S=setofrerticesintreeA
.

Prim add> minimum Weight Crossing edge for cut (s
,
VIS)

(Apply Theorem)

Kruskal's Algorithm

A = O while / AI < lvl - t

1) Find edge (air) of minimum Weight not in A .

2) If no u-r path using edge in As
Then Al Au {Cuir)}

return A

Example
a Edges Added

if • je Ïhm A = { 1 }
munn A = { 1,2 }

" À 5 ,µ A = { 1,2
,
3 }

ia A = { 1,2 , 3,4 }

A = { 1,2
, 3,4 ,

7 }
A = { I. a. 3. Y

,
7,10 }

Prof 0f Correctne»
c. = s

Kruskal add edge e .
Ca

- - -
-
- - -
- --

: :

:
' cut s -- C

,

;
!

;
;
;

"

"
"

!
ca VA = VIC

,

c] min Weight edge amoungdaohed edges .

septimbwdoth20-lt.ec/-ure4
PrimjAlgorithm:LazyImphmtati_

Note: A = set of edges ,
slides F- A

.

Primsttlyorithniceayertmplemntntion
Challenge: find min ueight edge ul exactly one endpoint in T.

• | ce ° 3 Observation : For each vertex r
,
heed ony min Weight edge connecting v tot.• §

°

• { a
5 UN 7 ° •

2 °

Mot includes at must one edge connecting r to T
. why ?• % wow si ° If not includes such on edge ,

it can fake Chaput edge. Uhy?•

☐
0 °

y
MM 6

do o -

Grey: Not in Tree ,
not one hop way from our Tree

room

Black : In our Tree
• un

Red : Not in Tree
,
One hop way from our Tree

Prim (graph G)t.si/-lvertexu)PQ=empty
priority queue of vertin color a black

cost = arry of size in for all edges (air)
edge = array of size in if r is grey
color all vert.co greg

Colan r red

PQ insta (v
,
Hu, v1)

Visit (o) cost Iv] =wlu
,
v1

White (PQ not empty) edyelv] : (niv)
n = PQ .

Delete Mint) elseif (vs red) and Lulu, u) l cost (v])

A = AU edge[a] PQ
. Decrerxkylv , wluivl)

Visit (u) Costas =wluv)

edyelv] = (niv)

Kruskal's Algorithm (slide # 48 - Lecture 3

A- number of vertus Challenge : Would adding edge vu 1- tree T create a cycle? If not , add;t .
M: number of edges

° Et

Vorst case: nom = n { °

run Dfs from r
,
check if u is reuchdde 4- at mat Hedges)

= H (n ' ° log
• log• use 1h union . find data structure !

• 1

Union - find
•• Maintain a set for each Connected Component int .
•• If V and W are in same set

,
the adding v-w would create a cycle.

• to add r-w toi
, marge

seb containing r and W
.

Dynamic Connectivity Problem (Incrémental)

1) start il a graph v1 only vertus (no edges)
2) Edges arrive sequential}
3) Keeps Track of Connected components as new edges arrive

Generic Algorithm

✗ A = 0

for each edge (Uiv) in sequence of edges
if CONNECTED (air) = = 0

thn UNION(air) Il A 1- AU {v.v}
tetum A

CONNECTED (u.v)
= FIND(u) = = FIND (r)

FIND (u) : tetum th Component id of u
r
label

Algorithm 1 :

Data structure id - arroz of integer
id if vertex i belongs to component K ,

this id[i] = K
.

Initial↳ set id[;] _

- i for i --0,1
,
. . - in- I .

find (i) return id[i] Holt)
"

UNION (i
, ;)

linear scan through id
for each element eqnal to idj] set it to id[i]

3 Union/1,3)
O I Z 3 4

Jt
±

2] 4

Septemberardrdoal (Lecture 5)

CONNECTED (i
, ;) = FIND (i) = = FIND (j) ✗ Vorst - case ① (n)

FIND (i) = idli] Nid[id[id[. . .

#[;] . . .]]] " Ollogn)
✗ Heep Colling id récursive} until idli]

-

- i

While (id[;] ki) {
il idli]

} returni

=
a

UNION (i
,j) " already know th route of i and;

"
✗ Ott)

id [a] ' b ✗OR id[b] ' a

UEIGHTED - QUICK- UNION (i
,;)

" Warne we keeps Track of size (# nodes) in each Tree
if free ul a is larger
id [b) ta

Othrwise

id[a] tb

Proposition
Ueighted - quick -union en>ures that all nods have depth E login) , where his Averti ces

Proof Given mixture 0f CONNECTED UNION Operations ,
1) het r be some nude . runtime = 0 (m login))
Depth of r inverses (by 1) on} if root of V changes

2) Root of r changes only if size of vs free at least doubles

het Sj be size in the Tree of r after j label changes (root changed)
n I § ? 25, _ , 2 2- 2. sj.at . .

.

? 2. l
"

⇒ j' En <⇒ j ± log , (n)
^

2" os, = 2
"

S , = 2

Vertices in th free 0fr
^ D
' So = 2

' so = |

ex . 2
"
"°

> 16=2
"

"

! y
Path Compression

↳
> 2

'" s 1
.

(récursive properties
After call to FIND(i) make each mode in th i - to - root path a direct descendent of th not

.

'
2
"
box log

*
n # times

repeat'y taken at moot 1 .

Beller Bound on Runtime Runtime upper band for ueighkd -
A

☐

(l) = 2 Au (1) a
""

quick. union W/ path compression :

O/ ma (n)) A
,
(1) =3 10

"

O/ (m log
*

n + n)
,
mis # opérations

aln) = mn { K An (1) t 1 } A
,
(1) = 7 ' log* (n) = { log

*
(login) if > 1-

A] (l)
= 2047 O if = 1-

Single Source Paths Problem

1) Warmup
: single- pair shorlest path prob .
source rector s

destination vertu t

2) Single - source shorlest paths problem

A Useful Tool for find
ing
th Mst : Cut Properties by Josh Hugon YT

A cut is an assignment of a graph
'

s nodes to two non-empty sets .
A Crossing edge is an edge which corrects a mode from one set to

a mode from another set.

Crossing edge separating gray and pink

vertical

^

minimum - Weight Crossing edge
must be in Mst

.

(ut Propertg : Given any
cut

,
minimum Weight Crossing edge is in th not.

Hoof ! Suppose that th minimum crossing edge e were not in th Mst. Generic MST Finding Algorithm

° Adding e to th Mst credos a cycle .
Start with no edges in th Mst

° Some othe edge if must also be a crossing edge
° Find a cut that his no Crossing edges

°

Removing fond adding e is a Tower Weight spanning Tree in th MST
.

• contradiction !
° Add Smallest Crossing edge to th Mst

.

° Repeat until V- I edges.f

MST does not containq e !
e L

^

adding e to not Crealis a cycle !

9127
An s - v path (of # edges K) is denoted as p = Cvo

,
v. . . . - , via)

l l

s -- V
, V -

- VK

Sequence of edges

cvoiVD.fye.gg?,i.'iGk-''vk)wCp)--IwCvg-i
,
V
,)÷

.

path p

Osnrnsvo

§→O→→
:

Optimal substructure

An optimal solution to a problem contains within it

an optimal solution to subproblems vertices

example problem : Find shortest path from i
-

to 't

example subproblem : Find shortest path from j to K

shortest i - k path

!mm>①mm wcpjk) < wcpvx) twlpxk)

H+iYTa"}
Pj ✗
④

Pxk

Lemmjf
this ' a' could be

'

d
'

subpaths of shortest paths are also shortest paths

Formally : 1- et PK = Cv
, , v2 , . . . , vk) be shortest Vc - VK path

Take arbitrary is such that Isis 's t k

and let Pig - (Vi, vi.+ , , . . . ,
V;) be subpath of RK

Then Pij is a shortest Vi - Vg path

September 271h 2021 (Lecture 6) BY : ZiHao Rob

[} ,

Proof shortest v. - VK path

④mÉ→nÉn>④mÉ④

Proof of claim

suppose F shorter path P'i; Cwcp 'ig)< wcpi;)

Then w (pic) + wcp' i;) + wcpjk) < wcpii) + w (Pij) -1 wlpjk)

(Pik is not shortest)

Notation

let s be source vertex

Let 8 (un) be weight of shortest u- u path

Let DEV] be upper bound on weight of shortest s -v path

Let Tiv] be predecessor of v in the algorithm 's

currentsf-known shortest S - v path
"predecessor array

"

BFS for unweighted graphs Cpg 6 of lecture 6.pdt)

L ,

• f÷;÷.
"""e. •☐

drawn over

s
' ! 0C I v1 - IED
I 1

1 c

l • '

, !

Tool ← Important

RELAX (un)

huntIt dIu] + wcu,v) < day
①-④→①

d[v3← dtu] + wcu
, v7

IT [v1← u

Claim of proof r;-) Y is shortestpath .

Note : IT is an array of predecessors .
Think as it stores th path (linked list)

^

Updating path to r with u as predecesseur.

Weighted DAG - Directed Acyclic Graph
7-

④] Topologicallysorted

→ →

Algorithm - At the end of this algorithm, you'll have a predecessor array.

1) Use topological sort (via DFS) to obtain topological ordering of vertices

(2) For each vertex u (in topological order)

For all adjacent vertices v , call RELAX Cair)

• Proof of Correctness

consider shortest path from s to v Cvo
,
. . . , VK) with V0 :S and vk=v

Since the vertices are processed in topological order,

the sequence of RELAX calls include subsequence

RELAX (Vo
,
v
,) , RELAX (v, , v2) , . . . , RELAX Cvk -I , ve) RELAX Cvo

, 4)
RELAX Cvo

, V2){ RELAX [" ' ×)④→#÷④→④I . . . - - →④
#

RELAX Cv, , v27
RELAX (×

, vz)
RELAX (V2 , K)
RELAX (V2, V3)

consider the operations RELAX (Vo, V,) , . . . , RELAXCvn , vk)

claim

dTv]=É⑧=8"

= 81s, v7

Proof (induction on K)

Base case : 1<=0 d Ivo] =D Is] = 0 = Scs
,
s)

IH : Just before RELAX CV; -i. v;) we know d[Vg - i] = 81s, v; -c)

Is : After RELAX Cv; - i. v;)
,
d Ev;] = SCs

, vs)

(Proof) d[v;] ⇐ DEV;- ,] + wlvg - i , v;) CÉH
) 8 Cs

,
v; -c) + WCV;- i. V;) = £1s, v;)

October 4th 2021 (Lecture 7

Dijkstràsttlgorithm

Input : A simple directed graph G- w / nonnégative edye -Weight> and a source vertex s in G

Output : A number d[u] for each vertex u in G- such that d[u] is th Weight of th shorlest path
in G from S to u

Dijkstra (V,
E
,
s) : 5- set of vert:p

S = { s }
^

sËîÀe
d s = 0 minimum cost

While s =/ V

for all VES such that there is an edge (air) for some u.gg ;
< cheapest "d compare!

Set cost du] = min { (qu) : vins} d[u] + W (u ,
r)

of tb vertes ,
/et v be one for which ca] is minimum

Add r to s

set d[v] = c[v]

ex
.

9 , × (six) > 0+1=1 RELAX (u, r)

s
,

(s , y
) > 0+2=2 → if d[a] + who

,
r) d[✓]

y (s , z) s 0+7=7 Hen da] = d[u] + wlu ,
v)

IT [v] ' IT [u] 4
7

s
2-

,
✗

L
s

'

y

7

2-

Dijkstra (V,
E
,
s) : set t infinite RELAX (u, v) :

for r in V if d[u] + wlu.ir) < du]

DU] =D ; #Év] = null ; du] =D[u].tw/u,v)

DES] = 0 Mr] = y

5=0
① = BuidPriority Queue (v. d)
While a not empty
4-- DeleteMintQ)
s : Suu

for r in Adj[u]
Relax (u.v)

← We don't are about th path
for Prim !

Lib '

at must
,

m Calls ← Decrease Operation !

Oln) for Binary of Fibonacci heap
Olloy n) call for Binary or Fibonacci heaps
Olloy n) call for binary heap
0 (l) call for Fibonacci trap

Correctness
In any itération . . . K V E S

Haim : for all vin S ,
th algorithms path Pr from SÂ is a shortest s-v path

Proof by Induction (Induction on Ist)

(I I

BDe Corse : 151=1
,
with S -- {s} ,

Ue know d[s] = 0 = 8 (sis)

Clearly , Ps = (s) is a shortest s-spath (of length Zero!)

Induction Step: Suppose th claim holds for Ist = K
Prove that it holds for Ist = K -11

' "')

(claim holds for Is/ = Ku)

Suppose claim holds for Ist = K
het Ist = K and suppose Alg. is about to add r to S and /et pr beth path to r .

Consider an arbitrary alternative path Pr
'

. Pr
'

has a first edge (× , y) that crosses th cut (s
,
VIS

←
Pr

'

S
' Y

g
mm) x s Y Suppose 3 Pv .

. .

g

NN ×

,
z

} }
whoa minou WIR

') Lw (R)
n

>
2-

Pv

✓

Path R
'

W (Pi) d 86.x) + wlx , y
)

cannot be = d [×] + wlx , y
) (inductive hypothesis)

shab than ? du] + w (u
,
r) (r is next vertex added to S)

Pr = Sls
,
a) + wlu

, r) (induction hypothesis)
= w (Pr)

Dijkstra, Algorithm - Négative Ueights
What would Dijkstra do ?

"

Greed is good
"

✓ ,
- a

"

Greed is not good lutin a graph his
u négative edge weights)

"

i. :
p

Bellman - Ford Algorithm
Path Relaxation Propertg: number Predesxsor Array (Backtrack to source

(solution)
v

het p -_ (Vo ,
V
, , Va) be a Shortt path from Vo to Vu .

Initialize d and ÎW / sources
.

Suppose that a sequence of Relax Calls our which includes th subsequence
:

° RELAX (K
,
V
,
)

, RELAX (kik) , . .
. .
RELAX /Va, ,Vr.)

then after It loot Relay call in this subsequence and
for all time the after

,
we have

d va
= 86.4

.

)

y

* Priority dos not malter , can View

4
in any arder !

S > y z
> a

-

✓ Dijkstra his lower runtime when no
- 6 Note: u > v > w > 4 négative edge weight> .

WL
2

is a négative cycle.

An observation: Suppose shorts. path from vertex s to vertex t consists of I edge
p
= (K , V,

) w / s = Vo ant t --y .

Then after colling RELAX (K
,
V
,
) :

d t = d v
,

= SH
,
V

,

= 81s
,
t

' Shorlest path from , to this been found!

'

Hou to ensure RELAX /K ,
V
,
) get> caHed?

Initialize d and I is / source s
for each edge luv) E E
RELAX (u ,r)

An observation: Suppose shorts. path from vertex s to vertex t consists of 2 edge
p
= (s = Vo ,

V, , Va = f)

Then after colling RELAX (K
,
V
,
)
, RELAX (V, ,

K) :

d t = d va] -

- S (v.
, v.

= 81s
,
t

> shorlest path from , to t his been found!

Hou to ensure RELAX / Voir ,) ,
RELAX lt

, , K) get collect?

Initialize d and IT WI source s
for j = 1 > 2

For each edge Luv) E E
RELAX (u , r)

If no négative cycles, shortest path from vertex s to vertex t consista of (at mat)
n-1 edges : p = (K ,

V
, ,

. . . , Va) w / KE n - 1 .

After Colling RELAX (Vo .
V

,
)

.
RELAX (kik) ,

RELAX (K. , , Vn) :

d[t] =D[vu] = stro .vn) = Slat)
(shortest path from slot his been found!)

Hou to ensure subsequence RELAX (K ,
V
,) , . . . , RELAX 1h. , , Vn) of Calls occur?

Initialize d and IT ul source s

for j = 1
> n- 1-

for each edge (u , v) E E

RELAX (u,r)

v

BELLMAN -FORD (G. u
,
s) RELAX (u , r)

Initialize d and IT ul source s If d[u]-1W (u ,
u) l d[✓]

for j--1 > n - l d [v] =D [u] + wlu ,
v)

for each edge (v.v) E E IT [v] = u

RELAX (u
,
v)

for each edge (niv) E E
If DG] > d[u] + wlu.ir)

Returns False

Returns True

Correctness

claim 1: If the are to negativo cycles :

a) Th Algorithm correcty Finds th shorlest paths (d[v] = Sls ,v) for all
V) and pre de ces>or array is correct .

Prof : This we already showed in In dérivation of th Algorithm! Th désired
subsequence of

Calls to RELAX ours
,
which is all that is required .

B) Th algorithm returns True .

Prof : Ue on} reed to verify that . . .
d [DE d[u] + wlu ,

v) for all edges (inv) E E
from claim I (A)

,
this is equivalent to . . .

8 (sir) ! 8 (s ,u) + w / air) for all edges (u ,
v) E E .

This must be th case .Uhy? Ans-✓ path that first visit u this follow >

edge Inv) cannot have less weight thon le shortest s-v path .

claim 2 : If the is a négative cycle ,
th algorithm detect, it and returns False .

Prof : Assume the is a négative cycle . . .
JÎ d Y ;Î d j . ,

(to
,
V
, ,
V2 , . .

. , VK) where V. = Vu
, K

O
j = , W Vj- | , Vj

, w (Y, N;) 0

suppose ç. on, pion µ. ag.n.jpmr.p.am.,.?⃝All edges (u.v) E - ihre d r d u
+ wlu.ir)

K

Sum over edges in cycle : j :| d y d
,

d G. ,
+ WH- i.Y

October 7th , 2021

These notes include everything
single source shortest paths = Bellman Ford written on the chalkboard and

includes some information from the
All paths shortest paths slides

,
so make sure to check

the slides
Bellman Ford (continued>

Proof of correctness
cutoff for Midterm

Assume there is negative cycle is shortest Paths

(Vo
,
Vi
, V2 , i. , Vik) [Vo = Uk]

¥2, www.v;) < 0
Suppose for contradiction that

[algorithm returns true]

v.
.I

all edges lur) E E : d Ev] £ d[u] + wcu.ir)

sum over edges in cycle : ← IÉdYii±wC✓i-,¥yd[v;] = É DEV; -,]
I = ' i.su#tombothsidesusing-hiseqyalityAm

0 c- ¥ÉwCv; -i. v1

Single Source Shortest Path Algorithms

Type of Graph Algorithm Time Complexity

unweightedgraphlbfsocntm
DAGWeighteddirecqggnapn%P"%""S☐rt/DFs_paseyg(n+m#Djikstra 's - Binary Heap 0cm log n)
(non-negative weights) Dijkstra 's - Fibonacci Heqp Ocnlogn + m)

weighteddirectedgraphbellman-t-ordolnmcanyweig.nl-

s)

by Zitlan Rob ecture 8

pairs

start Front start from O (Voir ,) ,
(kik) , (kik)

All - Pairs Shortest Path Algorithms

first approach - run single - source shortest paths

algorithms n times
,

once per choice of source vertex

Type of Graph Algorithm Time Complexity
Dense Graph
Time complexity

non- negative weights / Djikstra's - Binary Heap Olnmlogn) Ocislogn)
Dykstra's - Fibonacci Heap Ocnzlogn -1mn) OCn3)

anyweightsBellman-t-ordolrimocrfAH-pa.rs
Shortest Paths

Problem : Find the path from itoj

Subproblem : Find the shortest path from i to j
where intermediate vertices belong to

{ 1,2, . . . ,k }g.y.nggn.my?.ng.m,,.#
where intermediate vertices belong to

{ 1,2
,
. . . .

n }

For 1<=0,1
, . .

.

,
ni let D:;

""
be the weight of the shortest

path from i to j for which all intermediate vertices are in { 1
, " ,k}

#-44*050
all intermediate Dijk>←restart intermediate
vertices in { 1 , K}

vertices to the set

case I ¥
,

case 2 { 1,2
, .
.. ,k}

!_Pn① ①Ñ¥④m¥m
all intermediate

all intermediate
vertices in { tick- l}

vertices in { 1 , ii. K-B

Dijk> = Dick-" Dijk = Dieck" > + Dkjlk-1)

Equator Biggest
slides
Next to store

upper
'

band on Shortest paths
for euery pair of verti ces .

shortest

Switch from
array

d to matrix D of size mxn .

n Dij Upper bound on shorkst path from ity .

Switch from predecessors array n to predecessors matrix 11
.

= Predecesseur of j in some Shortest path from source i .

what is cheaper ? Exduding n or

Including n .

D
' K)

restrict

interned vertus to|" "t { "' " '
" }

Letp be a shortest path from i toj .

Clearly , all intermediate vert: ces in path p
are in { 1 , . . . , n }. Abo , we can break down

p into at mat 2 paths whose intermediate
Vertices are in {1 , . . . , n-l } .

Slides

these set problemo are getting easier and easier ,

with more and more restrictions
.

Floyd - Warshall Algorithm

Recurrence : Dig4) = min { Dig CH, Dik
"- "

+ Dkjlk
- "
}

Base Case : Dig '" = wci
, ;) → Because no intermediate vertices can be used

Floyd- Warshall (w)

☐ (o) = W
for K =L → n

for i= I → n
for j= , → n

] Ocn})
Diglk) = min { Digckl, Dik

"- "
+ Dk;l"" }

return Dcn)

Correctness : Dig
'"

is weight of shortest path with intermediate

vertices in { 1
,
. . . in } . This is the shortest path itself !

"_mI%⑤ ⑧ belong to { 112, . . . , 1<-1}

\$⑧m*m•⑧

Flow Network Example

find a way to send as much stuff from Vancouver to Montreal

Calgary 70

Winnepeg 1000
Vancouver 100

so Montreal
⑤ ④

Edmonton
100

50
300 200

TorontoSaskatoon
400

• the amount that goes into a vertex must also come out.

• the numbers written in blue is the capacity of an edge,
the " Max amount of flow that can be sent using that edge

"

at a time
.

↳ EI Calgary 70170

flow /capacity

⑤
1001100 30150

- Try trace through w/ a 4 by 4 example ! Or And Code the Algorithm .

Why?

CLRS

•µGt• p .
696) Eventually you are allowed to be

tertius I to n .

Time Complexity What about that predecessors matrix ?
thou do we print a shorlest path ?

(K-l)
D;,

(K-l)
(ose1- D;!"

"
+ Dri
,

Path will not change. Reuse predecssor
from before : IT

,

= Il
(K-')

(ose 2 D;!
""

+ D
'""

Dijck-1)Kj
Path updates to /path from it K) (path
from k toj) . 1T

'" '
= ftp.j

'" ')

" set predecesseur of j in shorts1- path
from source i using intermediate vertes

Midterm # 1 Cut 0ff ! in {! . . . , K} + be predecexorofj in
Shortt path from k using intermediate

We can me
"

both " paths tertius in { 1
,
. . .

.
K - l }

.

"

simultanéously .

Flow Network

p Capacity
Abstraction for materiel Flowing

so through th edges .

agraph G- = (KE) W / source

30
S E and sink 1- E ?

Nonnégative integer Capacity ciel
for each e E E

*
No parallel edges
No edge enter, s
No edge learn t

Maximum flow Problem

Definition An st - flow (flow) Fisa function that satisfis :

For each e EE : O Ple) (le) Capacity
for each v E - { s , t} : e into r f6) = couture 5-(e) flow conservation

flow
519

g
y

in flow at ✓ = 5+5+0=10
"
"

ou hÉEy {%. six
Capacity

s muséum , * +

Out flow at ✓ = 10+0=10
515
y
✓

,

g
✓ J

'0/15

%
0,6

Oh,- §
" "° 7

✓
✓

10 / /•
,

V
10110

Definition The value of a flow it is : Val (f) = eoutofs Fle)
.

Value = 5+10+10=25
.

515

sms

Eh
10115

✓

Graph

>

^

y

✓
j

✓ j

October 14*2021 Lecture 9

We have that o Fk) ((e) . Where fi > flou and ci> Capacity .

Value of flow
✓ (f) = f6)

e out of s

Max - flow Problem :

find a flow of maximum value .

f- 10+5+10=25 ✓ = 10+5+13=028 ,
on

>

4/5 8110

www.F. %,
%.

^

. 5110 ✓
✓ >

sÀ
s mm >

,

" °
,

>
""°

it

The ZÉZÉ %,

% % N'°

1011J
✓

✓

✓

13116
,

✓

Minimum Cut Problem

Definition A St - tut (cut) is a partition (AB) of threrticeswl SEA and TEB
.

Definition Its Capacity is th sum of th capacites of hedges from A to B
.

Cap (A.B)
= cle)
e out of A

Capacity = 10+8+16=34

Crossing edges

✓
,

>

,

>

10 10

j

s
5
,

✓

,

>

"

Ét s ,

✓

8
,

>

"

it
r r

15

✓

✓
✓

,

✓
A ✓

))

16

Capacity = 10+5+15=30 don't count edges from Bto A

Min - cut Problem :

find a cut of minimum Capacity .

1

1

10

✓
,

✓ J

s >

,

8
,

>

,

t

✓

10
v

'

, simple Example * Arbitrer.ly Pick
r

a Path to suturale !

Capacity : 10+8+10=28 n

"

pff {"" %
s
" '°

, ["20
+towards a Max - flow Algorithm

n

"

Greedy Algorithm ✓ (f) --20

GNÉ { 20130 Ho
start wlfle) --0 for all edge et E. s

" '°
> Timken +

Findan sont path P where each edge has Fk) de) .
Augment flow alongpathl . .

"

Repeat until you get stack . go.fi?.!h..,y.y
" """

Network G- sinker> RIEN +

flow Capacity
✓ L

y

a
014

018 Value of flou
0/10 % % olio

g
0/10
,

✓

0/9
,

>

"

011°
,

"

f 0

"

Repeat find paths w / remaining space , until . . .

n 014
'

ending flow value --16

8/8
10 /
'°

2/2
%

61,0

y

✓ t

g
6/10

,

✓

819
,

" ' '°
, f 16

Bitter solution

>

n
314 ending flow value = 19

10110 0/2
% %

q, , ,

g
9/10

,

✓

919
,

>

"

" ' '°
,

"

f 19

Residual GraphGiletv16
,
) -- ✓ (a)

Forward Edge

For edge e
= (u , r) E ECG)

if f- (e) L [(e)

thn add e to Gr
with résiduat Capacity ((e) - Fte)

Backward Edge

for edge e
-

- Cuir) E ECG)

if f- (e) > 0

thn add e' = (niv)

with resi dual capacity Fle)

Naim

Lel f
'

be a flow in Gt
Then ft f ' is a flow

prof

Lete be a for ward edge .

Want O Ple) + J'(e) [(e)

toidual Capacity of e .

C (e) -f6)
then f- (e) + J' (e) t f(e) + [(e) -f

Suppose e-_ (nu) be a backward edge
résiduel capacity of e is f (niv) .
j' Lv

,
u) = - fin

,
v) * f

'

(u
,
r) = - f

'

(r
,
u)

l flu ,
r) - f

'

(nu) t clair)
O

f
'

(qu) flair)

f- (u.v) + f
'

(av) = flu ,
r) - f

'

(r
, u)

f-(u
,
v) - flux) = 0

Augmentiez Path
Definition An augmentin, path is a simple Svt path Pin th résiduel graph Gp .

Definition The bottleneck Capacity of an augmentin, Pi> th minimum résiduel Capacity of
any Edge in P

.

Key Properties Letfbe a flow and Ietf be an augmentin path in Go .

then f
'

is a flow and va/ (f
'

) -- va/ (f) + bottleneck (Go ,
P)

.

Augment / f. c. P)

b bottleneck Capacity ofpathl.
FOREACH edge e E P .

If (EEE) f-(e) f(e) +b.
ELSE FIER) f6') - b

.

RETURNF
.

Ford - Fulkerson Algorithm
Ford- Fulkerson augment.mg path algorithm :

start w / f(e) = o for all edge et E .

Findan augmentin, path Pin th residualgrnph Gu. .

Augment flow alongpathl . Note :

Repeat until you get stack .

Ford - Fulkerson G.at , c)

FOREACH edge EEE : f6) O
.

G- v. residual graph .

WHILE (there exists an augmuting path Pin G- v. .

f- AUGMENT (f. c. P) .

Update Gi .
RETURN f. rab

Example View Demain Lecture Slides 10 p.at 26

Network G- Résiduel Graph Gp
flow Capacity
✓ L

n
014

>

,
4

' residual Capacity

o/\o %
%

% mo
Value 0f FIN

,, ,

8

,

• ,,

g
0/10
,

✓

0/9
>

"

011°
,

"

f 0

"

g
' °

,

✓

9
>

"

' °

,

"

f 0
>

October 21" 2021 Lecture / O

Integer Capacites (Assumption)

Given flow it If] Augmentin, path Pin Gs. then new flow Full have Hf ') ✓(f) +

ciel
> AU flou> f

5
cle,)

> | ✓ (f) cle)
(le
])

v
e out of s

c

EX .

G-v.
100°

^
1000 1000

"¥0 ^
^%00.jo}. .. | : -

s
'

t s t
'

s t

7 7 7

1000
,

~
1000 1000

✓

~ 0/1000
✓ 9,0%1

Any s- t / A.B) for
any flow -5Kf

) cap /A /B)

Cap /AiB)
= ((e)
e out of A

Missed Notes 22:06 23:10

edge e -_ (air) is " into A" if Crossing edge with UEB and VEA .

Flow Value Lemma O

Lel. (A.B) best cut Hf) = f-(e) f6)
e out of A e into A

Missed Notes 27.08 33 '

-09
> Any St cut (AB) (Any flou

1) Fle) f- (e) Kf1 f6)
VEA eoutofv ✓ EA e into V e out of A

and out of A and into A

eatora

((e) Cap / A , B)
Missed Notes 35.02 36 : 45

= f- (e) f6)
eoutof A e into A

Missed Notes 3808 4%02

Weak Duality Relationship between flows and cut,

het F be any flow and AB be
any
cut . Then

. . .

Max flow> il ✓ (f) Mins- tout, (AB cap A.B

Prof ✓ (f); flet f6)
e out of A e into A

flow-value
e.io, ,

f4)
lemma

eouto.rs
((e)

=

cap /A ,
B) •

Prof of F. F Finds Max flows

At Termination nos- 1- path in Gj .

Let A
*

be a set of vertus reachable from s in Gp .

Let B- = V A?
SEA

*

,
1- C- B-

cannot existe"

Ass B* Gp
,

, u -
i
- - - - - -

V
,

yg

> > v
'

- -
- -
- U

'

:
BackWard edge

(cannot Exist!)

Missed Notes b-7:58 1:03:48

Short est Augmentin, Path Q Which augmentin, path?
A. The one with th Feast number of edges . (can find ul BFS

Shortest - Augmenting- Path G.s.t.cl Cost of BFS

FOREACH edge e EE : f6) O
. mn . m

G- if résiduat graph .

^

of paths

WHILE (there exists an anymutiny path in G- v. .

P BREADTH - FIRST- SEARCH (G-f.sdfAUGMENT (f. c. P) .

Update Gi .
RETURN f.

OverView of Andysi>

L1
. Throughout the algorithm , length of th shortst path neuer decrases .

2. After at mod- m shorlest path augmentations , th length of th shorkstaugmntingpathstrictb.increuses .

Theorem
.
The shortest augmenting path algorithm runs in Olman) time .

Prof :

01min) time to find shortest augmentin, path ria BFS .

Olm) augmentations for paths of length K
.

If there is on augment ing path , there is a simple one .

= 1 E KL n
= 01mn augmentations . •

October 25" 2021 (Lecture 11

Bad Case for Ford - Fulkerson

min ,
and log C

Q Is generic Ford- Fulkerson algorithm poly-time in
'

input size?
A. No

-
If Max capacity is C , this algorithm can fake c itérations .

• g-> ✓ → w -it each argument path >ends on} 1
•• s →w → ✓ → t unit of flou I# augmenting paths = 2C
• s-sv-sw.it
• s→ w → ✓→ t v

'
> t

^ n
•

. . . C C C

• s-sv-sw.it >

• s→ u → ✓→ f s e
, u

m n- 1

BFS . Un + m)
= 0 (m)

Chasing Good Augmentin, Paths

Chase augmenting paths with: Edmonds - Karp 1972 (USA)
• Max bottleneck Capacity . Binic 1970 (Soviet Union)
• Sufficiently large bottleneck Capacity .
• Feuest number of edges. Shou : # augmenting paths : 2mn

For flou it and vertex V
, letsjls.ir) be length of Shortest s- r path in Gp (" shortcst " meam least number of edges)

Lemma

If Edmonds -Karpis run on a flow network , then throughout th algorithm ,
for all vertus ✓ C- V Est }

,

th shorlestpath distance 8f (sir) neuer de crises .

Gp (v) is distance of r from S in resi dual graph Gif .

Short est path distance

si (r) sp Ir)
n r

later time earlier time

Prof (of Lemma

het if be th flow just prior to first augmentation that décrues some lshortest path) distance
,
and /et f ' be th next flou

Among all vertus whose distance decrases from Gp to G- v.
'

,

/et v be th vertex with minimum Sp. (s , r)

Let P be shortest s-r path in Gp
'

,
and Ktu be predeces>or

of r in P

After Augmentation : summa u s r

P is path in G-j'

1) Spi (sir) = Spi G.a) + I

Because sp' (s ,u) si (sir) ⇒ Sp ' (s ,
u) - Sp (s , u) 2)

Claim : In ftp.shortests-upathisofthformsmmm> v '
u

claim ⇒ 8f (sir) = Sp (sw) + l 3)

Suppose 7 augmentin, path such that Gp
> G-v.

' such that sp' (v) sp (v)

Leet v be vertex in Gp' such that distance r and amory all such tertius , si (v) is minimum

(l) Spl (v) = Sp (u) + l (
pre de ces>or in Go')

(a) by ' (u) - sp (u) lui > distance cut r)

Suppose 8f ' ln) sp (u)

then 8f ' (u) = Spi Iv)- l

Missing notes 2700 33:40

8f ' Is
, r) = Sp

' (sir) -il l ')

t 8f (qu) + 1 121

,

= Sp (s , r) +2 G '
'

shortest path dist . from s to r actually increased by 2.
(3)

Prof

first
,
Ue daim (u ,

r) is not an edge in Gt .

Suppose (for contradiction) that (niv) is edge in G-f.

v

f. (s ,
r) « sp (s ,

u) + l (triangle inequality)
E sp ' (s ,u) -11 (a)

=

Sp ' (sir) (i) %

Indeed
, (u,r) is not in Gp .

But ! (air) is in Gif' .

⇒ (nu) belongs to the path dong which flou was augmented in G- v. .
⇒ (Ku) is edge in S.p. from stou

.

Edge (qu) is in Gr and (Ku) belongs to th shorts! S-u path in Gu. .
V is a predecessors of u in shorlest s-u path in Gp (Jp (a) = Si /v1 + |)

Theorem

If Edmonds - Karp is run on a flou network
,
thn th algorithm performs Olmn) flow augmentations .

Prof

;
!

_

^

;
!
! '

;
!
.

G- v.
s

,

'

,

< i '

.

'

>

: s :

Lo !
"

<
,

: ↳
! ↳

Let P be augmentions path in Gp s -
t
.

f- (to
,
V, ,Y become P is a Shortest path .

fi : K. E i
.

At least one edge (vi.vi." I in Puill be
" bottleneck edge

"

augmentation of flou uses all of this

After augment : (Vi , Vi+,) is removed ! and edge: residual Capacity .

we add backWard edge (Vin . Vi)

Suppose that later , in some new resi dual graph G-v.
'

,
th edge (vi.Vin) cornes back after augment flou in G-f

'

.

⇒ (vi. , ,
Vi) belongs to shorts s - t path in Gp!

8f ' (j ,ti) = Spi (si vin) + I
d sp (s , Vini) + t
= fp (s , V;) +2

Missing notes
47:22 - 50 : 20

Each time edge (niv) is removed and cones back ,
Shortt path distance from s to u

"

by I

fact Any shortist path distance n - l
of

edge re -

Emergences is at must
< 2

times one edge can be removed and come back = 0 (n) (for some edge)
edges =m

paths = 01mn)

Runtime of Edmonds-Karp- Dini, : Olman)
l
"'t 0f Bts in each itération is am)

.

Selections th K" Smallest Element
for simplicity we

-

Il assume all in elements are distinct

Selecting Médians and Orderstatist.es
(no big idem are needed for th general case)

° Fundamenta Problem:
Select th K" smallest element in an unsortcd sequence

° Definition : An element ✗ is th K" arder Stati>tic of a sequences if x is the K
" Smallest element ofs .

° Selection Problem:
° Given an array s of n elements and KE { 1,2 , . .

. , n } .
° Return th K" arder Stati>tic of s

• Example : Ifni> odd and K-- (n-11) 2 , we get th médian

A Naïve Solution

A sortir,-bosedapproach:

1. Sort s in increasing corder ,

Time Bounds for
2. Output th k" element ofthsorled sequence

selection* Stanford University
1972

Hou long does this fake? Is this th best possible?
' Oln) is possible !

Olnlogn) No !

Quickselect : Quicksort with Pruning
b- elements Goat : Select th 6" Smallest Element
S 15 elements

s

7- elements 7- elements
✓

pivot. le

pivot,
✓

Pinto 7- elements

pivot. L

15 elements] elements] elemnts

S _ pivot ,
'

p,

"

'vot
,

✓ ? pivot ,

PRUNE !

7- elements 7- element, 15 elements
✓

pivot. le

pivot,
✓

pivot. S

^

srthsmallest element and larger tiennent.

PRUNE
.

pivot. le

Quickselect ? a ? siennois siennois

_pi ' ? pivot ,
v1 K --6 (n) / Ya) = an pivot ,

j :O

4th smallest element and smaller Quick Select v1 K-_ (6-4)=2

Oct
.
28" 2021 Lecture la

Select
ing the K

"

smallest element

Quickselect

Quickselect S
,
K :

If S
. length 1) = = 1
Returns o

p= Pick Pivot (s) has to pick pivot ? To be explained later !
L

,
G = Partition (s

, p
)

If K = length (L)
Return Quickselect (L

,
K)

ElseIf K = = (length (l) + 1)
Returns

{be K (length (1) + 1)
Returns Quickselect (G

,
K- length (L) - l)

Quick select Optimist:c Analysa

• Suppose wealway, fake th pivot to be th first element in the sequence
and are so luck

,
that it

is a/way th médian .

• then Pick Pivot (s) just returns so and so costs 1
.

• Quickselect on sequence
of length n either :

(a) Calls Quickselect on sequence on length at mat n 2

or

(b) returns th k" arder stati>tic itself

n
ex .

4 I a I 5 6 7

Ma n /2

So : Tn tn a + en Tln) ET (n / a) + en
^

positive constant & Mn /4) + en / a + en

£ Tln / 8) + en /4 + en /a + en
o

Missing notes 16:22
- 24 :/4 :

cs

t Tlt) + ((n) ;
2- "

= 1- (1) + 2cm
This is great! But we cheated by cssuming that

= Nn)

faking th pivot as the first elementalway, gives in th médian .

Quickselect Worst - torse Analysa

Goal : Select th 6" smallest element !
15 elements

s

14 elements
✓

,
smptg !

pivota '

pivot , pivot .
13 elements

✓
v compte ,

pivot , '

pivot , pivot ,
etc

.

Nn) = Tln - 1) + en
= 1- (n - 2) + ((n - i) -i en

= T (n -3) + ((n -2) + ((n - l) + en
:

n

=

1- (1) + c j
-

_ a J

= 011) + c n (n + i) l

2

=

r (n')

Picking a Good Pivot

° Médian pivots are th best possible choice

° But if we know has to get the médian , we would be done !

° Idea : fry to find an
" approximant médian

"

Using less work
° find th médian of a Welt - chosen sub>et of th sequence

Approximante médian

Definition

Let B Satisfy la B I
.

We soy
that an element m of sequences is a B- appnximate

médian of S if :

At mo>t Bn elements of s are less than m
and set of all B- approximant

médians when B =] / 4At mo>t Bn Elements of S are grater than m

Is a B- Approximale médian a Good Pivot ?

• If the pivot is a B- approximant e médian
,
thn Colling Quickselect on a sequence

of n points leads to both
L and G that each are of size at mat Pn .

• If Quickselect alway, uses a P - upproximale médian , this at level j of Quickselect (ie. inside the

j
"
récursive call)

,
both L and G each can have size at Moot B

'

n .

Tln) ET (Bn) + en
E T (Bh) + cBn + en
1- T (fin) + clan + c Bn + en

:
n
'

± l'4) + cn ,=. B
'

= Nn) + %

Missing notes 37.00 38 : 00

Quickselect with B-
approximale médian

So runtime of Quickselect using a P - approximale médian is . . .

Ch

Tln) = 011) + i - s
= Oln)

this is great , but we are Stitt cheating . . .
We heed a way to find P- approximale médian AND

must accourt for th Computational cost of doing so !

Computing a B- Approximale Médian

• Partition
sequence into n 5 segments , each of size 5.

• For simplicity , we ignore th fact that th Iast segment night have size less than 5
.

• Find th médian of each segment. sort to get médian :O (l)) ' Total cost : 0in)

• Find th médian of th n g- médians (somehow)
.

ex . Finds médian of each segment
° Two Out standing problemo :

i (l) Is médian of médians a good pivot ,
i. e . is it a P-

approximale médian ?

•
h 5 médian , of which n to of are
less than or equal tu m

"

r

(2) Hou do
you efficients Compute médian

(m
*
)

médian of médians ! of médians ?

Quickselect with Médian - of - Médians Pivot

• Is médian of médians a good pivot ,
i. e . is it a P-

approximale médian ?

•
h 5 médian , of which n to of are less than or equal lo m

"

• for each such médian . 2 more points are less than m-

Suppose
>

m m
'

other médian
"

]
" "

z
" "

,

"

in

•

MA

• At least zn to - I elements less than m'
• Hence

,
at must 7-n to elements are greuter than ma = > m

*

is a P - approximante médian
• By Symmetry , at must In to elements are less than m' for F- - lo)

• Hou to Compute médian of médians?

• Ideal Récursive} call Quickselect (médians ,
(n 5 2

• Can this really work ?

° Original sequence was of length n
° Sequence of médians is of length on} h 5

• Smells like divide - and - Conquer

Run- Time Andy>is
Madian of médians!

Tln) = În g- + T / 7- n lo) + en Note : Ue could me substitution method to analyte
^

T / Bn Complexity . Instead , lets use " Stack of bricks" view

of th récursion free .

ces

Tln) 1- 011) + en ; :O (✗ + À
=

en Set ✗ = I J and B = 7 10

1- (d + B)
= 10cm en

= Un) Cdh
"

c Bn
"

Sum : ((d + B)n

ein s

'

caÀn caPri c Bin sum : c / ✗ + B)
'

n

Nov
.

Pt 2021 (Lecture B

Lost Lecture Wrap - Up

Ex
.

Bob : o (n) selection algorithm

:
Find Max : K : n

Probability
the sample Space , or outcome space ,

is the set of all possible Outcomes
.

We dente it as R .

Suppose we flip a coin once .

Then the sample Space is : D= { H
,
T }

If instead we flip a coin trice .

Then th sample space is :p
= { H

,
T}
"

= { HH
,
HT

, TH.TT}

Probability Distribution

first two of Kolmogorov> probability axions :

1) for
any out come a El

,
Pla) O

2) Pll) = 1 (with probability I , some outcome must happent

loin-flippinylxamplesuppox.veflip a coin once
,
so R = { H

,
T }

.

Probability distribution of out come is spécified by th Bernoulli Distribution .
Bernouilli (p)

Let P (H) =p .
We call

p
th success probability .

A fair coin correspond, to p
=

'

2
.

HH) + PIT) = 1
P I - P

Dice Example

Suppose we roll a pair
of dice ; thn D= { 1,2 .

. . .

.

6 }?
Probability distribution for th out come la pair of members) is th Uniform Distribution

.

The Uniform distribution satisfis Pla) =p (b) for all a.b ER

Therefore
,
We have

. .
.

P (a) = for all a El
r

In th dice example .
Pli

, ;) = 36 for
any i.j E

{ 1,2
.
. . .

.

6 }

PG)=P (2) =
. . .
=p (6) R = { 1,2

.
. . . .

6 }
=

'
6

Formally : for r EV
,
Ue can define th event

Events ✗ = v.

An event AER is a sub>et of th sample space . ✗✗ = r) =P / { a En :X(a) = r })

Suppose Ue flip a coin twice .
Then {HT

,
TH } is an event. or UE V

,

X E U

p (✗ c- U)
= Pl { a c-R : ✗(a) EU})

the probability of an event A is P (A) = a c- A l' (A)

Suppose we roll one die. What is th probability of rolling on einen number ? Ue can use Shorthard :

Plais even) =P ({ ciel : a is eren}) =P ({2.4.6 })
= % + 1/6 + 46 = 42

Random Variables

A random variable X is a function from th sample Space to VER .

✗ : r sv
to

Example 1 : suppose Ue roll a pair of dice and then Win an amount of dollars equal to th sum of the rolls
.

If the out come is (a.b) , then the amount we win is given by th random variable =

a + b.

Example : ✓ = -100,100 (0.5×100)+(0.5×-90)
✗ (H) = 100 = Ya (100-90)

✗ (T) = - 90 = 5

Example 2 : Suppose that K homes are racing ,
and we bet mong on horse j . If horse j wins th race ,

we vin $100 ;
Othrwise We vin $0

.

formally , Ue have sample Space D= { 1,2 .
. . .

.
K }

,
where the out come is i if Horse I Wind

.

The amount we Win is given by th random variable: ✗ = 100.1 horse juin.
= 100.1 a

Expected Value

For a random variable X
.

we defined the expected value as
. . .

/ ✗ =

ver vp (✗ = r)

=

aer ✗ (a)Ma)

Linearity of Expectation

for random variable X and Y and constants a
,
b
, C , we

have :

E- a ✗ =
a E- ✗

E- ✗ + y = LE ✗ + ¢ y ex . LE ay-iby.ie = a E- [×] + BE [y] + c

Independence

two events A and B are independant if PLANB) = PIA) . ✗B)

Two random variables ✗ and Y are independant if , for any u.VE V ,
th events Ku and [Y--r are independant.

Randomized QuickSelect and Randomized Quicksort

> Recall Quickselect's
"

Récursion Path"
.

> Recall Upper band on runtime of QuickSelect ul médian of médians pivot .
Thoren : Quickselect (sik) using th médian of médians pivot Returns th K

" order statisticien time at mat Oln)
.

Randomized QuickSelect probability of falling in this region is "a

Quickselect (s.nl : Kkk

If S . length 1) = = 1
Returns[0] If th random pivot falls within blue middle

p
= Random Pivot (s) Xp will be a random element from s region , the size of th next mode in th récursion

[L
,
G] = Partition (s , p) path vill be at mot 314 th size of th Current

If K ⇐ length (L) mode
.

Return Quickselect (L ,
K)

ElseIf K -_ = (length 4) + 1) Using th language from list lecture
,
such a pivot

Return P is a B-
approximale médian for 8=3/4

Ebe HK > (length (1) + 1)
Return QuickSelect (G , K - length (L) - l)

sketch of Band on Expected Runtime

H.
= # of elements in mode a

n

LE Uork E i = , c Xi =

c ÎLE ✗ i

Let's View the extension of th récursion path in rands

(highlightd in blue)
In each round

,
We draw a new pivot and conséquent} add one no de in our récursion path

Because the chance of a Random pivot Falling in th region of good pivot is Ya , in roughly hat th round, Ue

expect to decreuse th mode size to 314 of its previous size

After k rounds of good pivots , th mode size is on} n (3/4)
"

After log , ,, n rounds of good pivots , th mode size is at mat 1- and so the algorithm his returned

the expected runtime should therefore be at mort double th runtime of an algorithm that atwas,

get good pivots

Quickselect ut th médian pivot un precise} such an algorithm

= > Th expected runtime of Randomized Quickselect should be O (n)

ex
.
Rtl) -- q ,

NT) = l - q ex
. Missing notes 1:13:00 1:16:00

PIH) + PITH) → PLTHH) + . . .

Note: expected runtime is not a vorst case runtime !
= 9 + (i - g) 9 + (i - g)

'

q
+

. . .

=

q [(i - g)
°

+ (i - g)
'

+ (i - g)
'
+

. . .

=

q
l

I - U - g)
=

q / g
= 1

Nov
.

Y" 2021 (Lecture 14)

Sketch of Bound on Expected Runtime

j Recall

✓
u

pivota '

pivot , pivot .

✓
✓

pivot , '

pivot , pivot ,

/
"
mode 4th node

✗in X
,

X
,

X
, Xy

epoch 0 epoch 1 epoch mtn

Steph

✗
i
= # of elements in mode i

random variable !

n

runtime i = , c. ✗ it

Missing notes : 10:40 16:59

Stepa

mode i belongs to epoch O if % n ✗ i n

mode i belongs to epoch I if (4)n Xi 4) n

General case : if mode i in epoch % n ✗ i = % n

Missing notes : 18:00 27.00

¢ # time,
first good pivot

n

> = (tp) ddp Ip =

" P
=

v.= , KP (¥ times -
- K) (i - p)

?

= ni, K (tp) P
""

= (tp) n! KP"
= (l - p) n? ddp P

"

= (tp)
"

dp Î:O P
"

Missing notes :34:00 3%00

Random Quicksort

Quicksort s
, p ,
r)

If per

q
= Partition (s

, p ,
r
) majoritjofthuork !

Quicksort (s
, p , q

- l)

Quicksort (s , q-11 ,
r)

Randomized Quicksort Last Element as Pivot

Partition Spir)
✗ = S r

i =p - I

for j =p to r - I Loop invariant for
any

index K:

If s j
= ✗ If pt k ti ,

then S K X

i = it I If i -il k j- l ,
th S K X

swap (s i
,

s j If K-_ r
,
then A K = ✗

Swap S i -11
,

S
r

Returns -il

Missing notes : 45.00 50.00

Randomized Quicksort - Random Pivot

Partition (s.p.ir)

Swap (s Random (pir) ,
S r

✗ = S r th Iast element is now random

i =p
- I

for j=p to r - I Loop invariant For
any index

ki

If sj
= X Ifp - KEI

,
thn S K E X

i = it I If it / EK ! j - l , thn SLK] > ✗

Swap (s i , s j If Kr
,
then A-[K] = ✗

Swap (s i + I is r

Returnitl

Analyses Z
,

< Zal . . .

< Zn

>

j and K

Observation : Any 2 elements can be on} compared once

K j

Quicksort Quicksort

Let Xj be a random variable that = 1 if elements is compared to element K. ?

¢ Emparions
"""- """ ↳"d!

missing notes
: 56:00 1:00:00

Missing notes
: 1:00:00 1:03:00

Ex
.

2 5 3 4 / 7 6 10

✓

3 2 4 7 6 10

Missing notes
: 1:06:00 1:10:00

Pr Z
;
is compared to ZK

in some call to partition either
Pr Z ; is pivot or -2k is pivot

2

K - j+ I

Missing notes
: 1:13:00 1:20:58

Non 8" 2021 Lecture 15

Warm - Up Puzzle

We have a deck of indistinct cards (where ni> large) and repeatedly sample a card uniforme} at
Random

,
Witt replacement . On average , has many cards do we heed to draw before we see some card twicc (that is

,

befor we have repeated a card) ?

'
h = 1 000 000=220 106 •

°
106 •

. . .

• 20,06 = !

login = 20

Answer : If seen n distinct Cards then chance next card is repeat . . .

n n
=

n

n
+ nn
"
+

. . .

+
n n =

n time,

•

• . n Note: Section 5.4.1 in CLRS (Birthday Paradox

Dictionary
A dictionary is a data structure that contains Key - value pairs .

>

Keys should be unique Keg ,
data

' Values can be
anyHang and heed not be unique

"value
"

Dictionary Operations

SEARCH Next to Specif Key K
INSERT Next to speüf, Object x (obtain Key ria ✗ -Key)
DELETE Next to specifg Object x

Note : treuil see later why it is beber to taken input x rathr than × . Key)

Unordered List

Double Linked List : Head > Ko -
'

K
. I Ko

i

'
Ku

Operation Wurst - Case Running Time? (n Elements

SEARCH (S.k) Nn)
INSERT6.x) 011) mm
DELETE (s

,
x) O (1) Head > K]

>
K
.

Ko
i

'
Ku

rDtLL

Ordered List

K
.

K
,

K , K
, Ku Ks ko ka where Ko K

,
K
, . . . V17

0 1 2 3 4 5 6 7

SEARCH (S.K) Binary Search Erables Ollogn)
INSERT (Six) Nn)

DELETE (Six) Nn)

Balanced Binary Search Tree red -black Tree
.

Au tree

SEARCH (S.k) Olloyn)
INSERT (six) Olloyn)
DELETE (Six) O / login)

Direct - Address Table

Suppose th Keys are in a Universe K { Oil , . . .

,
m- l }

.

In a direct - address table
,
Ue create an array

T of size

m (initialize all entries to NULL) . Element with Key K is stirred in T K

SEARCH (S.K) : return TEK] 011)
INSERT (S

,
x) : l'[x.kz,]

-

_ × 011)
DELETE (Six) : l' [× - Key]

= Null 011)

Space Complexity? : 01m)

ex
.

Universe {0,1
, . . .

.

9 } : n=4 v1 4 Keys : 2,518,9

O l 2] Y 5 6 7 8 9

value"""le
storeDin

Value Value

storedin , storedinstaoredin

ex . Universe { 0.1

.
2
"" } where we ony have in Keys What fraction of space is being utilized ?

Staring ln Keys in 2
"

Space
• . . ° ° ° ° • °

Utilization : n 2
" X O

V1 V2

Hash Tables

A data structure that implement an associative array
abstract data type ,

a structure that can map Keys
to values

.

Akash table vies a hosh function to Compute un index (hah code) , into an array of buckets or slots ,

from which th désire d value can be found
.

Assume Keys E U and lvl is very large , but # slots in table =
m
« lvl

.

Missing notes : 40:00 43:30

Hash function and Collisions

Let h : U { 0,1
, . . . ,

m - i} be hah function
.

Given Key K ,
we call hlk) th hah value of Key K .

(ÊÏËµe :b(K) = K mod lo)

If two Keys hah to th same slot
,
then we have a collision

.

If th Key is a flooding point number , re>cale . If Key is a string , interprétes number .

Suppose any Key E O
,
3.1428

g (K)
= (K 3.Hag) 10000

À { 0.1.2 , . . .

.
qqn } > { 0

, 1,2 .
. . .

,
m - l }

h (k) = Mg (K))

Missing notes : 52
: 30 56 : 00

Handling Collisions

1) Design a hah function which makes collision> as unlikely cs possible .

2) (haining Lel- each hah table slot store a linked list.
3) Open Addressing If th désired entry is already full , th trg some other slots (

using some fixed arder)
.

(haining
In chaining . We store all elements that hash to th same slot j within a
linked list l' [j] .

ex
.

h /K) = Kmod 10 Insert : 17,4
, 7,34 ,

1
,
41

,
21,31

O I 2 3 4 5 6 7 8 9

"

J O I 2 3 4 5 6 7 8 9

4 17 34 7

^

,

^

v

4 17

SEARCH (S
,
K) : Search list at T hlkl 0 / length of T [hlk)) = Nn)

INSERT (Six) : Insert x at th had of list T hlx.kz) 0111

DELETE (S
,
X) : Delete x from list T hlx

.Key) O (1)

Load Factor

Left be a hosts table of size in that stores n elements .

the load factor X of Tis th average length of a Chain .
This is simply th ratio of number of elements

stored to number of slots
.
Therefore

,
✗ = n m .

If we have a good hah function .
th load is balanced (moot Chains have length x) . In this case

,
th

Lost of each SEARCH Operation is dose to x
.

It can be challengemy to find a good hah function which déterministe. cally keeps not chains at length a .

Instead ,
we Will consider situations where a hah function is randomtg selecte d such that

,
on average ,

any Chain T ;
hos length o .

missing notes : 1:08:00
1:13:00

Simple Uniforme Hoshina

For
any Key K ,

its hah value h (K) is Drawn Uni font
,
at random from { 0

,
|
.

. . .

.
m - l }

.

Let n ; be th length of th chain Tj .

Suppose Ue insert n elements and th simple unifornhcshinycsoumpt.in holds
.

for
my j in { 0.1 .

. . .

,
m- l }

,

what is E n
,
?

€ n
,

= ?

Let random variable Z :-,
= 1 h (ki) -- j

n n

nj = i= , Zij IE in Zij = Î , E Z :-,
= Î

, f. (z = 1) = nn =L

m

November 15" 2021 Lecture 16

Simple Uniforme Hosting

Slot j n ,
be length of chain at slot j ,

r

it" insert ed Key !
Let Zij = 1 Key ki hosties to slot j load factor

n n
r

Mj
=

i =L Zij nj i-- t
-

ij

= Î , Pr / hlk;) = nm = ✗

= l m

Expected Time for Unsuccessful Search for a Key K)

Proposition : The average
- case cost of an unsuccessful Search is 1- + &

Lost Model : Hosh costs one , examining an element costs one

Expected cost (Runtime) : (+
> / + ✗

(I) cost to compute hlk)
(I cost to traverse l' [r]

Expected Time for successful Search (for it" inserted Key)

Proposition : The average
- cose cost when searching for th ithinxrted Key (after all in Keys have been

insert e d) is :

2 n i m 2 ✗

Kitto Kitz

hlk;) >
> > Ki >

17 >

= r

fost = Îi." Xi
,
= h /K;) = h/ Kit
= h / K;) = r

=

n i) m 2
À
hlki)

loroHary : the average
- ease cost when Searching for an insert-ed Key (also chasen uniforme} at random from the

set of n insertet Keys) is :

2 n 2m 2 ✗ 2

Suppose is drawn from uniforn distribution over { 1,2 , . . .

,
n }

Lost for Searching for KI
n

=

h i = , n- i m d

n

= 2-1 n in n - i m

n-l

= 2 + nm j :O J

[
Missing notes :31:00

32: 30

flow (an Ue Design A Good flash function ?

r Uniform

Suppose floated point Key K ~ 0,1

h i km ~ { 0.1.2
,
. . .

. m - l }

Division Method

In the division method , we simply divide by m and fake the remainder :

Hh) = Kmodm

m =D > Niort) = h / N' +7) = h / 27) BAD CHOICE E.
i. small positive integer

m = 2
'

Binary Binary

suppose r =3 h 10010110g .

100 BAD CHOICE La

Multiplication Method

Select a constant A such that 0 A

2 tatie fractional part of KA
3 Multiply by m and truncata

h m - mod

thou to chase A ?

> A ce 0.61803398875
. . .

tends to Wark welt !

distribues nearby integer roughly uniforme} in Oil

Universal Hasting

the previous method, night work Welt in practica ,
but we do not have rigorous guarantee for them

. . .

A universal hash family is a collection H of hash functions h : > { QI
.
. . .

.
m - l } such that

,
for
any pair

of Keys J , K ,
at mat 7L m hash functions kf71 satisfy hlj = h(K) .

(for
any Keys K # of elements of fl such that hl,/ =L (K) = Il m

"

for
any Keys j =/ K at Moot '

m fraction of our hash functions lead to a collision
.

"

Hour can we we this ?

If we select h uniforme} at random from It , this for each
pair

of Keys ; . K ,
we have :

Pr hl;) = hlk)) m

Average - love Analyses for Universal Hasting

Proposition : Leth be drawn uniformly at random from a universal family of hash functions
.
Consider an arbitray

Key K.

If Key K is not in the table , then the expected length of the list I K is at not x
.

Otherwoe
,
the expected length of the list is at moot ti x .

Search for Key K

i Suppose Key K E : length of h (K) Let X, r. = hlj) = h (K)

lET la Xjr, M

h ° m
n
m ✗

ii Suppose K£ 1 : length of hlk)

lET
,
l = K lk

n - l m

n
m ✗

Bonus : Contracting a universal family of hash function lecture /4.pdf slide 29

Open Addressing

Open addressing is another method for handling collisions
.
Unlike chaining ,

each slot stores at mod- one Key.

If we trg to store a Key in a slot but find that it is already Occupied ,
we instead trg some other slot

,
and if that slot is

full
,
we trg yet another slot

,
and so on . . .

this
sequence of dots that ue trg when we are probing for an unoccupied slot is called a PROBE SEQUENCE

.

A first probe sequence
:

h/K)
,
hlk) +1

,

hlk) -12
, . . . ,
hlk) + (m- l)

all mod m

Linear probing was this probe sequence .

Missing notes
: 1:14:00 : s : 20

Missing notes
: l : 16:00 : 20:52

November 18" 2021 Lecture 17

Linear Probing

Using the hash function HK) -- K mod 10
.

Search : Use probe sequence and stop when we have either found the Key or arrived at an un Occupied slot .

Delete : It can cause trouble for Search .
s Upon délétion ,

mark slot v1 special value DELETED
.

> Insert : 35,21 , 16 ,
45

,
31

,
8

h(K) = 5
,
l
,
6
,
5

,
/

,
8

2 1 31 35 lb 45 8

O l 2 3 4 5 6 7 8 9

Note : It doesn't wok weIt in pratica >

primary clustering problem .

Limited number of probe sequence long m of then) .

Quadratic Probing

In quadratic probing ,
we we a somewhat more sophisticated probe sequence .

for carefully select ect positive
constants c

, ond c
, ,
the probe sequence is . . .

h K -1 C
,
i t çi

?

mod m i for I = 0,1 , m- l .

Advanta
yes

: Avoid> primary clustering problem .

%

Disadvantayes : Expériences Secondary clustering problem .

Stilton} m probe sequences .

2 Keys K
,
K
'

such that hlk/ = h / K
') Will have some probe sequence

Double Hasting
Leth

,
and ha be auxiliary hash functions .

i = 0 : hlk
,
;) = h

,
(K)

i = I : hlk
,
;) = h

,
(K) +h, (K)

Double bashing uses 1-le probe sequence
: i = 2 : hlk.it = h

,
(K) -12ha(K)

h (ki) = hlh.lk) + i. h, (K)) mod m
General way of specifying elements in probe sequence .

no common factors

h
,
(K) must be relatively prime to m in arder for th while table to be searched . Now can this be achieved ?)

If m =

power of I and ha (K) is odd Keys K .

Average - Case Analyses of Open Addressing

(an we provide average
- ease guarantee for open addressing? YES ! Under a certain assumption .

Assumption of Unifor in bashing for each Key, th probe sequence h (ki) is chosen uniformly at random from th set of all

possible permutations of (O , I , . . . , m- l)
.

(this is not realistic , but we night approximale it in practica using, e.g. , double bashing .

Proposition: Given a hush table with load Factor a = n /m l
, under uniforme bashing th expected number of probes in an unsuccessful

Search is at mo>t - ✗
.

Ex
.

42 2
3 45

o o .

If d = 1/2
,

l - Ya = 2
.

Proof : Suppose probe sequence is drawn from uni forms distribution over set of all permutations of (O . 1,2, . . . , m- l)

prob . that Ist slot is occupied !fost for sure in

my
prob that and Not is Occupied !

n n- 2 h- J

Expected cost : m m- l m-r m -s . . .

h

m
h
m

^
m

"
M o o o

✗ ✗ &
. . .

✗ La ✗
°

o o .

✗

Note: theorem II.8 of CLR> !

AmortiZed Analysa

AmortiZed analysa is a way of doing want - case anal,>is by bomding th average cost to perform each

Operation (averaged over th sequence of Operations .

Motivation : some Operations night be retry expensive , but thy happer infrequent} ,
so on average each opération night have lowcost .

Amortized Anab» is NOT RELATED to Average - Case Anab» : amortized anal,>is
doesn't we probability or expected value.

The Péril of Per - Operation Vorst - Corse Analyses

Ex
.
Stack S

OU) 011) 01K)

suppose that in addition to having the Usual PUSH and POP opération , we also have an opération KPOP
.

KPP (S
,
K) : Pop top K elements on stack for all elements if less than K elements are on stack).

Vorst - case cost of KAP Operation? > 01kt

Horst - case cost of sequence
of n PUSH

,
Pop ,

and KPP Operations? > 0 lnk)

Aggregate Analysa

Aggregate analyses bounds hurst - case runtime in aggregate over while sequence
of opérations .

ratter than

giving
Wurst - cue bands for each opération Separate} (without consideration of previous opérations) .

Ex
.
Stack with Klop

lost of each Klop is simply th number of actual popo that happer Within it .
total number of pops is at must total number of pushers (at nostri I

.

So
, any sequence of n puohes , pops . and Kf1 fakes at mot Nn) time .

Accounting Method

In the according method, for each opération we charge an amortized cost
.

The amoritized cost of an Operation can be greuter than for less than!) th actual cost
.

For th it" opération :

(i is actual cost , .
Î; is amortized cost. > Interpretation of Î; ci ?

Ue change th actual cost ci

Goal : Select amoritized costs such that we have : plus crédit êi ci .

n n

i = , (i i = ,
Êi

actual cost upper bound on runtime!

Accounting Method Stack with KPOP Example

If it" opération is PUSH : E- = 2 (
pay I for actual cost c.

=L and prepay
I because eventually the pushed element

night be popped).

If ith opération is POP : Ei = 0 (already paid for by some PUSH ! ci = I .

If it" opération is Klop : Ê = 0 (all pop are already paid for) .

> À ci IÎ 2 In

Eren though some actual cost> ci are large, all amoritized costs Î, are small .

Incrementing Binary Counter Example

K -bit Counter with INCREMENT

INCREMENT :

i = 0

While i < K and A[i] = = |

A [i] = O

n div,
any
»
:

⇒
invente
"

^

l' = it I

u,
,.pe

open
""

if ick
a.
""¥00?.¥ÎË

A[i] = | oui Yank! ou"

Vorst - case cost of n INCREMENT opérations ?

Aggregate Arrakis :

A[0] changes intimes
A [l] changes na Times

A[2] changes n 4 times
K- I i

total cost i. o n
'
a

°
,

y

i

h i = 0

2N

A ccounting Method :
In one opération , at must a single 0 UN
be set to I .

When a O is set to I
, charge $2

$ I for actual 0 > |
,
$1 to prepay

for l ' O

then a I is set to O, charge $0
.

cumulative

n n r r

total cost in Ci in ci
' 2IÎ 2 3 4

2h 4 6

7 8

8 10

10 12
11 14

15 16

November Land 2021 (Lecture 18

Dynamic Tables

We want a table which can support a stream of INSERT and DELETE Operations .

Like with hash tables
, we define th load factor of table I to be :

✗ # of elements stored int n

size of I M

When the load Factor is and a new INSERT opération arrives , Ue heed to increase the size of the table .
can be any fraction !

Ue also want th load Factor to be lower banded by a positive constant (lets use I a to ensure
that

Ue are using at least a constant fraction of the atlocated space .

Hou can Ue insert an element ✗ when th load Factor is (sotte table tis full) ? We heed to resize th table . For

Simplicity let's suppose th table is of size at least .

In # of elements stored in table I
.

NSE RT t
,
×

: # of dots
if In T

. size

Allocate new table Tnew of size 2- T.size cost is of

Insert all item in T into Tneu aiderT.nl/--Tnew
Insert x into I

t.nl?nAccountingMethod Credit prepaying

Each insertion charge $3 ,
broken down m :

$1 for th insertion itself (this is th actual cost)

$2 Credit for we upon resize opération :

$ Credit for
noviny

this item
$ credit for noviny an item that his already been moved (such in item has no credit anymore as it

used up its credit when it was moved th first time
.

Example :

Insertion

RedistribueTed Wealth Each Insertion Has Amortized cost

$2 $1 ignore $1 Ê = 3

insertion

$0 > $0 $2 $1 $1 Ê = 3

insertion
$0 $0 >

L

$0 $0 $2 $1 $0 $1 Ê = 3

"

$1 $1 $1 $1 Ê = 3$0 $0 $2 $2

r

insertion

>

,

$1 $0 $0 $0 $1 $0 $0 $0 Ê.
= 3$0 $0 $0 $0 $2

What about shrinking th table oncette table istooempty? By symmetry , you night think
" lets

halve th table when its less than halfempty ,

" but this is problematic .

Two way to see why : >

Consider what trappers when th load Factor is right around 2. A délétion triggers a halving ,
at

which point th table is now nearly full . Tuo insertions Trigger a doubling , and the table is right arond 2 agaih .
two de /Etions Trigger a halving , etc . this is to expensive !

2 A halling can happer son after a doubling since a doubling brings th load Factor dose to 2
.

But
,
after a doubling , nearly all elements have no Credit on then . Save don't have enough to pay for a ha /ring .

Ah
,
uh
,
don't we post pone hulviny until after we have bnilt up enough crédit

.

Leti charge $2 for each délétion :

$ for the actual dietion itself (this is th actual cost)
$ Credit to

pay
for noviny in item upon a halving opération

When have we carried enough Credit to do a ha/ring? When th table hors load l 4. why ?

Since th mod. recent doubling opération .
we have deleted at least a quarter of th table . Thus ,

We have enough Credit to more a quarter of th table upon délétion
.

Délétion
Delete general-es 1 extra S

L

$0 $0 $0 $0 $2 Ci 2

ignoring
v Delete

$1 $0 $0 $0 Ci 2

✓ Delete
$1 $1 $0

$0 $0 ✗ = L

For
any sequence

of n Insert Delete Operations :

n n

runtime =
in Ci in Ci

Î , max { 3,2}

IÎ 3

3N

Sub string Search

Goal : Find pattern of length M in text of length µ!
Typical} N M In some cases : M : N a

pattern ' N E E D L E

text ' I N A H A y S T A C K N E E D L E I N A

match !

ex. Searching pdf , memory or disks
, identify patterns indicative of spam,

electronic surveillance
.

SPAM : PROFITS
,
LOJE WEIGHT

,
herbal Viagra , there is no catch . . This is a one - time mailing . /

This

message is sent in compliance with spam régulations.

Screen seraping
: Extract relevant data from web

page .

ex .

find string delimited by 'b ' and Ub) after first occurence of pattern
"

Lait Trade :!

Brute - Force Substring Search

Check for pattern starting at each text position .

N = length of text ; M = length of pattern

Wurst case (cost)

M--5 ; N'-10

0 / NM) > Precise

M - (N- M -11
N- M -11

~ MN char compares .

Imagine Ma N or Mk N2 and N --10
"

November 25" 2021 Lecture 19

Backup

In
many applications . we want to avoid backup in text stream .

Trent input m stream of data
.

Abstract model : standard input .

Brute - force algorithm reeds backup for
euery mi>

match
.

Approach 1. Maintain buffer of Lost M characters
.

Rabin Karp Finger print Search

Basic idea = Modular hcshing. (Division Method) modular bashing with R = to and

Compute a hash of pat 0
. .

M- l
.

hashls) = s (mod 997)

h/K) = K mod Q l large prime number !

pat . char At (i) a ; (o o =
"

mod
")

i O l 2 3 4
,

2 6 5 3 5 % 997 = 613

Modular Hasting of strings with General Alphabet Division Method)

R = size of alphabet (# of distinct characters that can appear in text)
M = length of pattern

<

Ist char of text (represented in range { 0,1 , . . , R- l })

X
;

= (to . R
" '

+ t
,

- Rm
"

+
. . .

+ tm
,

• À) mod Q
= 1

Hash value of th initial M characters of text

Key Challenges

Challenged : If M is large , night have numerical overflow

Challenge 2 : Hasting one substring (of length m) : costo M
H asking N - M-11 : cost arder NM

Challenge I

If Mis large ,
then the number will overflow

.

R = size of alphabet I M = length of Pattern

Xo = (to - Rm
"

+ t
,

- Rma +
. . .

+ tm. , .RO) mod Q
=p

two Modular Arithmetic Identities

1) la +b) mod Q = (la mod Q) + (b modo)) mod Q
2) (a.b) mod Q = (la mod Q) . (b mod Q)) mod Q

X
.

= (À - t
.
+ R! t

,

+ Rota) mod Q
= (t.R.it

,
) - R + ta) mod Q

= HH mod Q).Rtt, / mod Q) - R + ta) mod Q

Ex÷⇒Horner 's Method runtime NM

to mod Q

h = 0 (to modo)R-it
,
) mod Q

for i = 0 > M- I (to modo)R-it
,
) mod Q R -it

,
mod O.

h = (h . R + ti) mod Q
returnh

Challenge 2 :
Xi is hush value for ti ti

" . . .

ti.im
,

Avoiding total cost of MN
.

Xiu is hush value for tintin
. . . ti.im

✗ ;
= (ti - R

'"

+ f.
+ ,

' R
" '

+
. . .

+ f.+ m- i - pi) mod Q

Xiu = (ti
-i ,
R
""

-1
.
. .

+ ti.im
. , R

'

+ ti.im - R
°

) mod Q

Xiv = Hi - ti - R
" '

R + tam mod Q
=

Xi - t, • R R + ti.im mod Q
'

(Rm
"

mod Q (precomporte)

Rabin - Karp substring Search Example

First R entries : Use Hornerbrule
.

Remaining entries : Use rolling hash (and
°

o
to avoid overflow

.

R
" '
= 10000

R = Rm
"

mod Q = 30

constant time
Operation !

L

Rabin - Karp Analysa

Theory .

If Q is a sufficient} large random prime
(about MN')

,

then the probability of a fake collision

is about IN
.

> over entire course of algorithm

factice
.

Chase Q to be a large prime (but not so large to cause overflow)
.

Under reasonable assumption ,
probability of a collisions is about Q .

single hash
Las -Vegas Algorithm

Use Rabin - Karp to find hash matches
,
and upon each hash match

,
check if substring> of text actually

matches pattern .

Cost : M

Expected Cost of Algorithm :

Q =
'
M

O N . l' a) ° M = M

O N N M . M)

Suppoo
= O (N)

Note : Alway> returns correct answer .

Extremely likely to run in linear time (but want case is MN!

Monte Carlo Algorithm

Aiways runs in linear time .

Extremely likely t return correct answer (but not atway, !) .

Advantages : Extend> to 2D patterns .
{✗tends to find

ing multiple patterns .
Dis advantages : Arithmeetic Ops shower than char compares . Las Vegas version requires backup .

Par uorst - case guarantee .

Knuth - Morris - Pratt sub>tring Search

Intuition
. Suppose we are Searching in text for pattern BAAAAAAAAA

.

Suppose ve match 5 chars in pattern ,
with mi>match on 6" char

.

Ue know previous 6 chars in text are B AAAA B
. aoouming { A , B} alphabet .

Don't heed to back up text pointer !

but no backup → BA AAAA AAAA
is needed!

Knuth - Morris - Pratt Algorithm .
Clever method to at

way> avoid backup .

/ !)

Déterministe finite State Automation (DFA) (CSC 320 Turing Machines

☐FA is abstract string - Searching machine .

finite number of states (including start and halt) .
Exactly one transition for each char in alphabet .

Accept if sequence of transitions leads to Halt State
.

Alphabet = { A , B,
C}

Arrives here if and ony if we have a match!

November 29" 2021 Lecture 20

Interpretation of Knuth- Morris - Pratt DFA

Question
.

What is interpretation of DFA State after reaching in txt i !

length of longest préfix put
Answer

.

State = number of characters in pattern that have been matched. that is a suffi . d- txt a. i

Example .

DFA is in State 3 after reaching in txt o . .
6 .

i

txt O I 2 3 4 5 67 8 01 23 4 J

B C B A A B A C A poit A B A B A C

i

txt O I 2 3 4 5 67 8 01 23 4 J

B C B A A B A C A poit A B A B A C

suffi✗ of txt O
. .
6

préfix of put

Knuth - Morris - Pratt sub>tring Search : Java Implementation

Key differences from brute force implementation .

Next to pre comporte dfa from pattern .

text pointer i neuer durement> .

public int search (string txt) { where i indicator what character
int i

, j , N = txt
. length () ; jindical.es the state

for (i =Qj :O ; i IN lljc M ; ie) {

j = dfa [1-✗t.charAI.li)][j] ; No Backup ! Running time .

}

if (j M) return i - M ; found pattern ! Simulate DFA on text : at mot N character accuses .
et>e returns N; Build DFA : has to do efficient} ? Warning

: tricky algorithm ahead

}

Knuth - Morris - Pratt Demo :D-5A Construction

Include one state for each character in pattern (plus auept state)

O l 2 3 4 5

patcharlttj A B A B A C

A

dfa j
B

C

Contracting th DFA for KMP substring search for ABABAC

☐
A
) l

☐
>

a] 4 5 6

Match transition
.

If in state
>

j and next char (= -- pat.charAI-ljl.jo/-oj+l .

first j characters of pattern next char matches now first jet characters of

have already been matched pattern have been matched

☐
A
, ,

☐
>
,
As

]

☐
, y

A
, 5

°
> 6

01 23 4 5

patcharlttj A B A B A C

A l 3 5

dfa j
B a 4

C 6

Mi>match transition
. Backup if c ! -- pal. . charat (j) .

i.

j O l 2 3 4 5

☐
A
, ,

☐
>
,
As

]

☐
, y

A
, 5

°
> 6 patcharlttj A B A B A C

Bic
; A / 3 1 5 /

"

☐
A
, ,

☐
>
,
as

]

☐
, y

A
, 5

°
> 6 dfa j

B O J O 4 0 Y
A

B. c j C O O O O O G
L

"

☐
A
, ,

B
,
,

A

,]

☐
, y

A
, 5

°
> 6

r

Suppose ni>match : AA
A

B. c

°

i i shift i by I in text
"
A"

v

'

' shift i by I
☐

A
, ,

☐
>
,
As

]

☐
, y

A
, 5

°
> 6) A

> (
r

C

<
B.C

ABB

v. etc . Details in th slides ! "

BB 0match at all
A

Bic

,
A <

☐ A ✓ B ① match at all
"

☐
A
, ,

< B
,
,

A

,]

☐
, y

°

A
, J

°
> 6

r

c

'
B.C
' '

< B. c

Mismatch transition
.

If in state j and next char c ! = pat . charat (j) ,

then th Iast j - I characters of input are put I
. . j - l .

followed by C
.

<

state ✗

to Compute dfa c j : Simulate put I
. . j- l on DFA and fake transition c.

^

Hill under construction !

Ex
.
DFA

'

A
'

5 =] ;

simulate BABA ;

tatie transition '

A
'

= dfa '

A
'

3

Note: Mémorisation !

simulation of
A BABA

L

:

A

Ex
.
dfa

'

B
' 5 = 4 ;simulation of

A
<

BABA
☐ Si mutante BABA i

L B
,

L

-
fake transition ' B' = dfa [' B'][3]

A

Running Time . Seems to require ; stups ,

fakes on} constant time if we maintain state
.

A

{×
.

dfa [
'

A
'] / 5]:|;

A

i from state ✗
,

fake transition '

A
'

= dfa [' A'][×]

Knuth - Morris - Pratt Demo : DFA Construction in Linear time

Match transition
.

For each state j ,
dfa part . charat j j j -11 .

^ first j characters of pattern
^

Now first j -11 characters of

have already been matched. pattern have been matched.

Mismatch Transition
.

For State O and char c ! = pat . charat (j) ,
set dfa c o

= 0
.

=
.

☐
A
, ,

B
>
,

A

s]

☐
, y

A
, 5

°
> 6 j y

= ✗

B.C

☐
A
, ,

☐
>
,

A

s]

☐
, y

A
, 5

°
> 6 ✗ = simulation of emphg string

Bic

,

A
✓

☐
A
, ,

☐
>
,

A

>]

☐
, y

A
, 5

°
> 6 O l 2 } 4 5

(C

patcharlttj A B A B A C
B.C

,

a
A | | 3 5

B A

O As 1 >
a s]

☐
s 4 As 5

°
> 6 dfa j

B O J O 4
r (C

B. C
C O O O G

B,C ☐

A

☐
A
,
Î

"

B
>
,

A

,]

☐
, y

A
, 5

°
> 6 ✗ = Simulation of BA

j (
c

B. C
c

V

O I a 3 4 5

pat. charAtj A B A B A C
Final

A l l 3 1 5

dfa j
B O d O 4

C O O O O 6

Running Time .
M characters acces>es (but space time proportion to RM

.

KMP sub>tring Search Andji>

Proposition . KMP substring Search acces>es no more than M-in chars to Search for a pattern of length Mina text of length N .

Prof
.

Each pattern char auesoesed one when Contracting the DFA : each text char accused one (inthworst case)
den simulation

,
th DFA

.

Proposition .

KMP Construct, dfa X] in time and space proportionat to RM
.

Larger Alphabets . Improved version of KMP Construct> nfal][] in time and Space proportionalto M
.

November 29" 2021 Lecture 20

Greedy Algorithms Interval Sdeduling
Job j starts at s

;
and finish at if . Two jobs compatible if they don't over /ap.

Goal : find maximum sub>et of Mutual} compatible jobs .

Greedy template .

Consider jobs in some natural arder
.

Tuke each job provided its compatible with the one already taken .

Earli est start time Consider jobs in axending corder of sj .

Earlest finish time Consider jobs in ascending arder of f.

Shortt Interval Consider jobs in wxending corder of f- § .

fewest Conflicts For each job j , count th number of conflicting jobs ç .

Schedule in axending arder of ç .

Exemples and Counter {✗amples .

None of the provide a consistant

optimal solution .

Earlest Finish time first Algorithm
{ARLIEJT- FINISH -TIME- FIRST n ,

Si , Si , . . -

, Sn ,
f.

,
-1

.
Fn

SORT jobs by finish time so that F
,

E f. &
. . .

± Fn

A 0 set of jobs detected This job v1 earliest finish time
FOR j = 1 Ton will a/way, be run .

If job j is compatible with A
A AU {j }

RETURN A

Proposition . Can implement earlier! - finish - time first in Olnlogn) time .

Keeps Track of job j'
* that was added lait to A.

Job j is compatible with A if Sj if* .

Sorti
ng by finish time fakes Olnloyn) time .

theorem
.

{artest - First - Time first is optimal (th schedule A that algorithm returns maximises th number of jobs
that we can run on a single computer , amomg all scheduler

Let O be optimal schedule
.

O Q
.
Q

.
On

Let A be algorithms schedule
.

A
a. . au au

Prof K = m

Emma

"

Greedy Story. Akad
"

For all r K
.
Far for

Boof by Induction

Base Case : il a
,

f 0
.

Because it
a ,

F i i l
, . . . ,
n

It is True that Fla
,
) is th min finish time amoungst all jobs ,

beaux ofaxendingorder !

2
.

Assume Mar
. .

F On

3
.

5 Shou Far for
I. H

when A consider> th rt" job to add
,

Proof S Or F Or
_ ,

F
an ,

,

it will be cible run job or .

Algorithm Considered or and
ar and it chose ar f ar for

Prof of theorem by Contradiction

Suppose K m suppose greedy is suboptimal But thn
, job ou , is compatible with

(h
, , Az , . . _

, Uk)

From Lemma
,
Welt

,
flan) flou) A could also added

job Oval
.

Therefore
, Algorithm could add job Oral

Interval Partitioning

Lecture j starts at s, and finish > at if .
Goal : Find minimum number of classroom> to schedule all lectures so that no two lectures occur at th same time in th same room

.

{artist start time first Algorithm

{ARLIEST - START- TIME- FIRST n.s.is, , . . _ , Sri , Fifa , il
SORT lectures by start time so that s

,

<
sa &

. . .

± sn .

d O number of a/located Classroom

FOR j= 1 Ton

IF lecture j is compatible with some dvxnom

Schedule lecture j in any such Classroom K
.

{HE

AlloCate a new classroom d -11
.

Schedule lecture j in Classroom d-il
d d-il

RETURN schedule
.

Proposition . The earliest - start - time - first algorithm can be implemented in Un log n) time.

Prof
.
Store Classroom in a priori} queue Key = finish time of its fast lecture

.

To determine Uethr lecture j is compatible with some Classroom
, compare § to Key of min Classroom K in priority queue.

to add lecture j to classroom K
,
increase Key of classroom it to if .

Total number of priority queue Operations is Oln) .

Sorti
ng by start time fakes Un lgn) time

.

ai

Remark
.

This implementation Chase, th Classroom K whose finish time of its test lecture is the earl est
.

Lower Bound On Optimal Solution
d'*

Definition
.

The depth of a set of open interval> is th maximum number that contain any given time .

Key Observation . Number of dussions needed depth .

Question
. Does number of dussions needed alwuys equal Depth? At end of our algorithm ,

Answer
.
YES! Moreover

,
earliest - start - line - first algorithm finds one .

D= d*
> to be proved!

Boof that d = ¢
#
,

depth

^

at end of algorithm

Suppose Ue are considering xheduling the j
" lecture . We open new classroom if all Current} openclassrooms are running

lectures interval, that intersect lecture j internat j .

At mod. d' - I such lectures intersect
,

(by definition of depth).

So
,
one Classroom must be available for j .

So
, we Will neuer open more than d# dis>noms .

Scheduling to Minimiting Latem»

Minimi
Zing

Latche» Problem
. input : n ,

t
, ,
ta

.
. . . .tn

,
d.

,
de
.
. . .
dn

Single resource processus one job at a time .

Job j requires
t
; unit, of pressing time and is due at time dj .

II. j starts at time sj , it finished at time f- = § -1f .
Laiteries] :L, = max { O , F, - D; } .

Goal : Schedule all jobs to minimize maximum latences L = max, f.

Example : shorts! Poussin
,
Time first schedule jobs in axendingorderofprocessiyt.net .

| 2 Counterexample ! Job 1- Job 2

t; I to
not tate tate

D; 100 10 l
,
= ma✗ {0,1-100}=0 l

,

= max {0,11-10}=1

Earliest Deadline First

EARLIEST- DEADLINE- FIRST n
,
t.it.

.
. . .tn ,

d. du . . . dn)
SORT n jobs so that d

,
Ed
,
&

. . . tdn

t o

FOR j -- I TO n

Assign job j to interval t.t.it, .

§ t ; if t.it
,

t t.it,
RETURN interval> Si .fi

.
Sa

,
fa

, . .
.

,
sn.fr

.

No Idle that

Observation I
.

there exists an optimal schedule with no idle time .

Observation 2. Thearliest - deadline- first schedule has no idle time .

T
-nversions

d. Ldj
Definition Given a schedule 5

,
un inversion is a pair

of jobs i and j such that : i j but j scheduled before i
.

J i as before.ve assume jobs are numberd

inversion
À so that d

,
Ed
,
&

. . .

& dn

Observation 3. theories! - deadline- first schedule his no inversions .

Observation 4
.
If a schedule with no idle time has an inversion

.

it his one with a pair of inverted jobs scheduled consecutive} .

befor swap: j :

inversion
Fi

after
swap

: i i

ti

Haim
. Swapping two adjacent ,

inverted jobs redores th number of inversions by one and does not
inverse th max Hemo.

Prof
.

Lel l be th Heuss before th swap ,
and lel l

'

be it afterwards
.

l'
r.

= la for all K =/ i.j .
l' i Eli

.

If job j is /ale
,
l'
j
= fj - D; (definition)
= fi - dj (j now finish> attire f)
± Fi - di (since i and j inverted)
t li

.

(definition)

Proof of Optimal} of Our Greedy Algorithm

First . All silicules with no inversions and no idle time have some maximum latinos .

finish time of I" job

Max - Internes> will be some amongtb a jobs .

common deadline

Haim
.
Three is an optimal schedule with no inversions and no idle time .

Prof (by
"

Exchange Argument
")

Suppose 0 is an optimal schedule ,
and suppose 0hm an inversion .

Thn
,
] i. j such that job i is immediately followed by job j

AND di > dj inversion

f- (j) is finish line of À ; max { 0
,

f- (i) -d ; }
job j before exchangeJobi job ; max { 0

,
f1;) - di }

exchange ! max { 0
, ftp.d, }

job; jobi lj
dj di f- (i) -_ f1;) max Interne» beFure exchange!

^

is finish line of i

Greedy Ana}>is Strategies

Greedy Algorithm Stags Akad : Show that after each step of th greedy algorithm ,

its solution is at least as good as any
Otter Algorithms.

Structural : Di> cover a simple
" structural

"

bound asserting that
euery possible solution must have a certain

value
.
This Shou that

your algorithm at
way

achieve this Bound
.

Exchange Argument : Graduat} transform any solution to th one found by th greedy algorithm without hurting its quality ,

Other Greedy Algorithms : Gale - Shapley ,
Kruskal

.
Prim

, Dijkstra , Huffman . .
. .

December 2"" 2021 Lecture 21

Interval Partitioning

d = # Classroom, used by our algorithm

claim .

D= d'
*

depth = best possible
Prof : by Contradiction

Suppose schduling j" lecture (in arder of increasing start time) and we already opened d
*

classroom
,

and thy are all Occupied (each open Classroom Currenty his running lecture which intersect> jth lecture).

if this happer!
t.hn depth ± d'* +1 lecture j

depth : y
Open

(d'±, ,
th

Classroom
.

Suppose d
*

=3

Dynamic Programming

Algorithm:c Paradigm>

Greedy .

Build up a solution incrémental} , myopi cally optimizing some local Criterion .

Divide - And- Conquer . Break up a problem into independent subproblemo ,
solve each subproblem .

and

combine solution to sub problem> to forms solution to original problem .

Dynamic Programming. Break up a problem into a series of overtapping sub problem> , and build up solutions to larger and

r larger subproblem> .

Fancy name for

caching away intermediate

result, in in table for later reuse .

History : Bellman
pioneered th systematic sturdy of dynamic programming in

l' 50s .

Application : Bio informatics
,
Control Thory ,

Information Thory . Operations Research, Thory , Graphics

Algorithms : Unix diff
,
Bellman -ford

Weighted Interval Schilling

Weightà Interval Schilling Problem .

Job j starts at sj , finish> at if , and hos Weight or value y .

Two jobs compatible if fb don't overlap.

Goal
.
Find maximum Weight sub>et of Mutual} compatible jobs .

Carliest _ finish- time first

Consider jobs in ascendin arder
of finish tire .

Add job to subset if it is compatible with previous Chuen jobs .

Recall
. Greedy algorithm is correct if all Weight> are 1.

Observation
. Greedy algorithm faits spectaura} f- Weight ed Version .

Notation
.
Label jobs by Finishing time : f. ± f. & . . .

Eil
.

Definition
. plj) = largest index i <j such that job i is compatible with j.

December 6" 2021 Lecture 22 Ote : Lecture had no audio
"

Dynamic Programming: Binary Choice OPT (01=0

Notation
.

OPT (j) -- value of optimal solution to th problem conoisting of job request I. 2
.
. . . . j .

fax |
.

OPT Select> job j . j = 0,42 , . . . ,
h #jobs

Collect profit Vj .
Can' ! use incompatible jobs { pl;) -11 , plj) -12 ,

. . . , j- l} . Y + OPT (p j

Must include optimal solution to problem consisting of remaining compatible jobs 1,2
,pl;) .

Case 2
.
OPT Does Not Select job j . optimal sub structure properties

0+0 PT (j- l) (prof via exchange argument)
Must include optimal solution to problem ainsi>ting of remaining compatible jobs 1,2

, .
. .
. j - l .

if j :O

OPTÇ/ = { °
Max { Y + OPT (pc;)) .

OPT (j- l) } otherWise

Weighted Interval Schilling : Brute Force

Input : n , s l
. - n

.
il t.in

,
V 1

. . n

Sort jobs by finish line so that f 1 f 2
. . .

f n .

Compute p I
, p 2

, . . . , p n . exercise : Hou to do this efficienty?

cost : Olnloglnl)

Compute - Opt (j)
if j --0

return 0
.

ebe

return max /vj + Compute- Opt p j , Compute - Opt j- l .

Observation
.

Récursive algorithm fails spectacular} because of redondant subproblemo
Exponentiel Algorithms

Ex
.

Number of récursive Calls for family of " /ayered
" instances grows like Fibonacci Sequence .

0 0

Prof ?

récursive Calls made by Compute - opt (j) = Tl;)

O I

I O O 2
2 1 0 2 1 3

3 2 / 3 / 5

:

j j - l j - d

-

j j-12
"

Fibonacci #

.

.

.

! 6 . . .

As j os T ,
>
l '

g

WeighTed Interval Schilling : Memoization

Memoization
.

lache results of each subproblem ; lookup as needed
,

Input : M ,
S t.in

,

f 1
. _ n

,
|
. . n

Sort jobs by finish time so that f l f 2
. .

.

f n
.

Compute p l
i p 2

, p n
.

for j =L ton

M[j] l Empty .
M O] ' O

.

M- Compute - Opt (j)

if ME;] is empty
M[j] ' Max (v [j] + M - Compute - Opt (p [j]) ,

M- Compute - Opt (j - l)) .
return ME] .

Weighted Interval Schilling : Running Time

Haim
.
Memoized version of algorithm fakes Olnlogn) time .

Sort by finish time : Olnlogn)

Computing pt) : Olnlogn) via sexting by start time .

M- COMPUTE - OPT (j) : each invocation fake> Oli) time and either
. . .

i returns an existing value M[j]

i i) fills in one new entry MÇ] and makes two récursive call >

Progress measure = # honempty entries of ME] .
initial/

y
= O

. throughout 01N .

(ii) inverses 0 by I at mot 2N récursive Calls
.

Overall running time of M- COMPUTE - OPT (n) is Oln) .

Bad

Renart
. Un) if jobs are presented by start and finish time .

-

6

5 4

4 3

3 2

2 /

| O

O O

Weightet Interval Schilling : t' inding a solution

Q
.
DP algorithm Computers optimal value .

Has to find solution itself?

A. Make a second pass .

Find - Solution ex
.

j O ' 2 3 4 5 6 7 8

if j=D
. _ _

_ . .
- - . ' ' ' - '

' MI5) m/6) mlt) m(8)

^ ^ 8teturn 0
. 0

elseif ✓ [j]
+ M[p[j]] M[j- l])

returns;} U find - Solution (psy]) .
"

/et p[j]
-

- j- 2

et>e if ✓ [8] + M [6]

tetum Find- Solution (j- I) M[7]

if ✓[6) + m[4]

ME 5]

Analyses . # of récursive call> n Nn)
.

Weighted Interval Schelling : Bottom - Up

Bottom -Up Dynamic Programming .

UnWind Récursion
.

Exercise : Can
you

solve problem using jobs

sortedby start time?
Bottom- Up (n ,

si
, . .

. .sn
.
f.
,
Kikivn

Sort jobs by finish time so that f
,
fa

. . .

fn
.

Compute plll.pk/.....pln) .
Mf0] 0

.

For 1 Ton

MG] L max { vi. + Mlp (j)] ,
M[j- l]} .

Least squares Foundationat Problem in Stati>tics

y

Given n points in th plane: (× , , y,) . (✗ i. y,) , (✗n , yn) .

Find a line y: ax
-its that mini mizes th sum of the Squared error :

n 2

SSE i -i y ;
- axi -b ×

Solution
.
Calculus min error is achieved when

a n i Xi Yi i Xi i Yi
,
b

.

- Yi a i ✗ i

n i Xi
?

:X ;
'

M

Knap such Problem

Given n Objects and a
"

Knapsack .

"
i " Wi

Knapsack instance
I I I

Item i Weigh Ui O and has value Vi O
.

n --5 2 6 a lueight limit U -
- Il)

J ' 8 5

Knapsack has Capacity of W
. Y aa O

Goal
.

Fill Knapsack so as to maximix total value .

5 28 7

Greedy by Value . Repeatedly add item with maximum vi. ex . { 1.2.5} has value 35
.

Greedy bg Ueight . Repeatedly add item with minimum Wi
.

{ 3,4 } his value 40
.

Greedy by Ratio . Repeatedly add item with maximum ratio ri lui
.

{ 3,5} has value 46 (but exceecb weight limit)

Observation
.

None of greedy algorithms is optimal .

Dynamic Programming : False start

Def
.

OPT (i) = max profit sub>et of items !
. . . .
i.

Case 1
.
OPT Does Not Select Item i

.

OPT Select> best of {1,2
. .

.
.

,
i - l}

. optimal substructure propertg
(prof via exchange argument)

Case 2. OPT select> item i
.

Selecting item i does not immediately imphy that we Will have to rejet othr items
.

With out Knowing what other items Were >elected befor i
,
Ue don't eren know if we have enough room for i.

Conclusion
.
Need more Subpnblems !

Dynamic Programming : Adding a New Variable full Problem : OPT (mW))

Def
.

OPT (i
,
U) = max profit sub>et of items !

. . . .
i Vith limit U

.

OPT (i - I , U)Case 1
.
OPT Does Not Select Item i

. optimal substructure propertg
OPT Select> best of {1,2

. .
.
.

,
i - l}

. Using Ueight limit U .
(prof via exchange argument)

Case 2. OPT select> item i
.

Neu Weight limit = U - Ui . OPT (i - ti U- Wi) optimal substructure propertg
OPT select, best of { 1,2

.
. . .

.
i - l } using this new veight limit . (prof via exchange argument)

if i = O

OPT (i - I , u) if Ui > UOPT (in) = { [
✗ { op ,- (i. 1. u)

, vi. + OPT (i - ho -ui)} otterwise

Knapsack Problem : Bottom - Up M i
,
U I where i -_ item and U -_ ueight limit

KNAPSACK n
,

U
,
u Un , v.vn

Demo

FOR no TO W

M[QU] 0
.

exclude
include] 18+22=40

For it TO n

FOR u:O TO W

If (Ui > u) M[i ,u] L M[i- l , u] .

*

{LSE M [i ,u]← max { m[i - I , u] . 4. + M [i - I , u- ui]} .
exclude i include i

RETURN Mtn
,
W]

.

* include 4
,

• exclude 5

Knap such Problem : Running time

theorem
.

There exists an algorithm to solve the Knap suck problem with nitens and maximum Weight W in

O nw time and O lnW) Space .

Weight> are integer between I and W

Proof
.

Takeo 011) time per table entry.
there are (nu) table entries

.

After Computing optimal values . can trace back to find solution : fake item i in OPT (i
,
u) iff M i.w M i - t.w.BG

Remarks
.

Not polynomial in input size! "

pseudo - polynomial
"

Decision Version of Knapsuck problem is NP - COMPLETE
.

IHAPTER 8

There exists a poly-time algorithm that producers a feasible solution that has value within 1% of optimum.

SECTION II. 8

