July 29 (Lecture 20)

Overview: We'll continue looking a bit at matrices of linear transformations and change of basis, and how diagonalization plays into these ideas. Finally, we'll end with a broad summary of the course.

Learning Goals:

- Correctly define and compute the matrix of a linear transformation from one basis to another.
- Correctly change between bases for the same vector space.
- Give a concise high-level overview of the course!

As you're getting settled:

- Homework 10 is due tomorrow (Friday, July 30), at 11:30 pm!
- I'll post some practice problems regarding the material from this past week.

Ces.wic.<mark>c</mark>a

 \bullet If you haven't done the CES, I'm going to give you ten minutes right now to do it. I'll hang out in a Breakout Room while you do; someone can let me know when everyone's ready and I'll come back.

Theorem (4.4.2). Let V be a finite-dimensional vector space with p. 267 *bases* B *and* C *.* Then P_{c-a} is invertible, with P_{c-a}^T = P_{a+c} .

> **Example.** Let $B = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\} = \left\{ \begin{bmatrix} \alpha & \beta \\ \beta & \beta \end{bmatrix} : \alpha, \beta, \beta \in \mathbb{R} \right\}.$ and $C = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ be bases for $T_{2,2}(\mathbb{R})$, the vector space of upper-triangular 2×2 matrices. Find $P_{B\leftarrow C}$ and $P_{C\leftarrow B}$, and find the *B*-coordinates of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix}$. Let's find $P_{c \leftarrow B} = \left[\left[\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \right] \right] \left[\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right] \left[\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \right] \left[\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right] \left[\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right] \right] = \left[\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix} \right]$ $\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{fiv}} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 \end{bmatrix} \implies P_{\text{g}_{\text{tr},\text{C}}} = P_{\text{g}_{\text{tr},\text{C}}}^{-1} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 \\$ $\left[\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}\right]_R = \varphi_{B \leftarrow C} \left[\begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}\right] = \begin{bmatrix} 1 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \\ -9 \end{bmatrix}$ check: $4\begin{bmatrix} 1 & 1 \ 0 & 0 \end{bmatrix} + (-3) \begin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix} + (-2) \begin{bmatrix} 0 & 1 \ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 \ 0 & 3 \end{bmatrix}$.

 $2T(\rho(x))$ **Example.** Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R}), Tp(x) = p(-x)$, with bases $B = \{1, x, x^2\}$ and $C = \{2x - 1, 3x^2 + x, -2\}.$ Relative to B, T is "nice": $[T]_{\theta \in \alpha} = \begin{bmatrix} [T(1)]_{\alpha} \end{bmatrix} \begin{bmatrix} \gamma(x) \end{bmatrix}_{\alpha} = \begin{bmatrix} [\gamma(x)]_{\alpha} \end{bmatrix} = \begin{bmatrix} [T(1)]_{\alpha} \end{bmatrix} \begin{bmatrix} -x \end{bmatrix}_{\alpha} = \begin{bmatrix} x^{2} \end{bmatrix}_{\alpha} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ Diagonal! Bis a set of eigenvectors for 1. " $\begin{bmatrix} f \end{bmatrix}_{0 \in C} = \begin{bmatrix} f(x-1) \end{bmatrix}_{0} \begin{bmatrix} f(x-x) \end{bmatrix}_{0} + \begin{bmatrix} f(-2) \end{bmatrix}_{0} = \begin{bmatrix} [-2x-1]_{0} \end{bmatrix} = \begin{bmatrix} 3x^2 \cdot x \end{bmatrix}_{0} \begin{bmatrix} -2 \end{bmatrix}_{0} = \begin{bmatrix} -1 & -1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$. Not nearly as nice if $\cdot -2x-1 = -(2x-1)+(2)$ $P_{0\leftarrow c} = \left[\left[2x\cdot1\right]_0 \left[\left[3x^3+x\right]_0\right] \left[\left[-\frac{3}{2}\right]_0\right] = \left[\begin{array}{c} -1 & 0 & -2 \\ 2 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right].$ $\cdot 3x^2 - x = 3x^2 + x + (-1)(2x-1) + \frac{1}{2}(-2)$ $\frac{1}{\sqrt{\frac{1}{n}}\int_{\theta\neq 0} [p(x)]_0} = \frac{p_0}{\sqrt{\frac{1}{n}}\int_{\theta\neq 0} [T]_{\theta\neq 0}} = \frac{1}{\sqrt{\frac{1}{n}}\int_{\theta\neq 0} [p(x)]_0}$ We changed boos to diagonalize the house mayor! So the boos If we had diagonalized $\tilde{L}1_{c}$ or , we would have found: is $\{3x^2-y_1, -2, -4x_0^2\}$, which is olog, if not as nice as B. $2 = 1$, alg. mult 2
 $2 = -1/2$
 $2 = 1$, alg. mult 2
 $2 = -1/2$
 $2 = -1$, alg. mult 2
 $2 = -1/2$
 $2 = -1$, alg. mult 2
 $2 = -1/2$
 $2 = -1$, alg. mult 2 * $C_1(3x-1)+C_2(3x^2+x)+C_3(-2)$ $= -2x-1, 3x^2 - x, -8$ $\begin{bmatrix} -1 & 0 & -2 \\ 0 & 0 & -2 \end{bmatrix}$

Example. Let
$$
T: M_2 \times 2(\mathbb{R}) \rightarrow M_2 \times 2(\mathbb{R})
$$
 be given by $T(A) = A^T$. Can we diagonalize T ? And is, find a basis B is $\mathfrak{h}_{\alpha}(\mathbb{R})$ to say $T(A) = A^T$. [1] $_{\mathfrak{h} \in \mathfrak{h}} \circ \mathfrak{h}_{\alpha} \circ \mathfrak{h}_{\$

Course Summary

- Started with vectors in \mathbb{R}^n and their geometry! Studied the dot product, projections, norm, vector algebra, and various collections of vectors that form geometric objects like lines and planes.
- Looked at systems of linear equations as a way to solve vector equations.
- Started to look at matrices as their own objects, with matrix operations and properties; saw the connection between matrices and linear maps, and various geometric linear maps! Studied subspaces associated to matrices and linear maps, as well as invertible matrices!
- Abstracted \mathbb{R}^n to general vector spaces! Linear dependence, spans, bases, dimension, and all of the other concepts from column vectors translate pretty much seamlessly to abstract vector spaces.
- Used determinants to study eigenvalues and eigenvectors of matrices (and invertible matrices!); diagonalized matrices! (See summary document of applications.)
- Saw that by using bases, we can identify linear maps with matrices, and diagonalize them too!

That's it for the class! Thanks for sticking it out; good luck on your final exam! Don't forget that you can always e-mail me or post on the forums and I'll try to get back to you soon. I plan to have office hours during exam period, so you can come chat; you can also arrange for appointments.