July 26 (Lecture 19)

Overview: First, we'll look a bit more at diagonalization and what it can do for us. Then we'll backtrack a little bit to coordinates and start seeing how we can tie together coordinates, general linear transformations, and diagonalization!

Learning Goals:

- Correctly diagonalize matrices!
- Use diagonalization to solve certain linear algebra problems.
- Correctly define the matrix of a linear transformation from one basis to another.

As you're getting settled:

- Homework 10 is due Friday, at 11:30 pm!
- Please fill out the CES! I appreciate your feedback. I'll give you 10 minutes at the start of class on Thursday to complete it, if that makes it easier for you.
- You should have your Test 2 marks back by the end of today. Please have a look at the grading and let me know before August 2nd if you have any concerns.

Example. Markov Chains (not on the final). Think: changing between two brand loyalties, or passers-by flicking a light switch on and off.

Let
$$P = \begin{bmatrix} x_1 & 0.4 & 0.4 \\ 0.2 & 0.3 \end{bmatrix}$$
 "tracking probability vectors". (Theorem: P_X^2 is also a "probability vectors"!)

If $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ x_2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 1 \\ x_2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ x_2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ x_2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ x_2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 & 0.4 \end{bmatrix}$ $\dot{X} = \begin{bmatrix} x_1 & 0.4 \\ 0.2 &$

Sect. 4.4, 6.6

Matrices of Linear Transformations

Let's return to general linear transformations. We saw that linear maps $L: \mathbb{R}^n \to \mathbb{R}^m$ were determined by what they did to the standard basis. Is that true in general? Can we extend the "standard matrix" idea to general linear maps?

Theorem. Let V and W be vector spaces, let T and S be linear transformations from V to W, and let $B = \{\vec{v}_1, \ldots, \vec{v}_n\}$ be a basis for V. If $\vec{v}_i = S(\vec{v}_i) \in S(\vec{v}_i)$ for all $i_1 \neq i_2 \in S(\vec{v}_i)$

Proof. Then
$$T(\vec{v}) = S(\vec{v})$$
 for all $\vec{v} \in V$. So, if $\vec{v} = a_{i}\vec{v}_{i} + ... + a_{n}\vec{v}_{n}$, then we have:
$$T(\vec{v}) = a_{i}T(\vec{v}_{i}) + ... + a_{n}T(\vec{v}_{n})$$

$$= a_{i}S(\vec{v}_{i}) + ... + a_{n}S(\vec{v}_{n}) = S(\vec{v}).$$
by linearly

Now, suppose that $L: V \to W$ is a linear map, $B = \{\vec{v}_1, \ldots, \vec{v}_n\}$ be a basis for V, and $C = \{\vec{w}_1, \ldots, \vec{w}_m\}$ be a basis for W. What are the C-coordinates of $L(\vec{v})$? (First, a helping theorem.)

1/2

Theorem (4.4.1). Let V be a vector space with basis $B = \{\vec{v}_1, \ldots, \vec{v}_n\}$. Then for \vec{x} , $\vec{y} \in \vec{v}$, \vec{s} , $\vec{t} \in \vec{R}$, we have $[\vec{s}\vec{x} + \vec{t}\vec{y}]_B = \vec{s}[\vec{x}]_B + \vec{t}[\vec{x}]_B$. (i.e. $[\cdot]_B$ is a linear map from V to R^{-1})

$$= \begin{bmatrix} L(\sqrt{1}) \end{bmatrix}_{C} = \begin{bmatrix} \alpha_{1} L(\sqrt{1}) + ... + \alpha_{n} L(\sqrt{1}) \end{bmatrix}_{C} = \begin{bmatrix} \alpha_{n} \\ \gamma \end{bmatrix}_{C} + ... + \alpha_{n} \begin{bmatrix} L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} = \begin{bmatrix} \alpha_{1} L(\sqrt{1}) + ... + \alpha_{n} L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} = \begin{bmatrix} \alpha_{1} L(\sqrt{1}) \end{bmatrix}_{C} + ... + \alpha_{n} \begin{bmatrix} L(\sqrt{1}) L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} = \begin{bmatrix} \alpha_{1} L(\sqrt{1}) L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} + ... + \alpha_{n} \begin{bmatrix} L(\sqrt{1}) L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} = \begin{bmatrix} \alpha_{1} L(\sqrt{1}) L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} + ... + \alpha_{n} \begin{bmatrix} L(\sqrt{1}) L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} = \begin{bmatrix} \alpha_{1} L(\sqrt{1}) L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} + ... + \alpha_{n} \begin{bmatrix} L(\sqrt{1}) L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} = \begin{bmatrix} \alpha_{1} L(\sqrt{1}) L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} + ... + \alpha_{n} \begin{bmatrix} L(\sqrt{1}) L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} = \begin{bmatrix} \alpha_{1} L(\sqrt{1}) L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} + ... + \alpha_{n} \begin{bmatrix} L(\sqrt{1}) L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} = \begin{bmatrix} \alpha_{1} L(\sqrt{1}) L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} + ... + \alpha_{n} \begin{bmatrix} L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} = \begin{bmatrix} \alpha_{1} L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} + ... + \alpha_{n} \begin{bmatrix} L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} = \begin{bmatrix} \alpha_{1} L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} = \begin{bmatrix} \alpha_{1} L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} = \begin{bmatrix} \alpha_{1} L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} = \begin{bmatrix} \alpha_{1} L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} = \begin{bmatrix} \alpha_{1} L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} = \begin{bmatrix} \alpha_{1} L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} = \begin{bmatrix} \alpha_{1} L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} = \begin{bmatrix} \alpha_{1} L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) L(\sqrt{1}) \\ \gamma \end{bmatrix}_{C} = \begin{bmatrix} \alpha_{1} L(\sqrt{1}) L(\sqrt{1$$

P. 288 (but for up its More general!). **Definition.** Let V and W be vector spaces, let $B = \{\vec{v}_1, \ldots, \vec{v}_n\}$ and $C = \{\vec{w}_1, \ldots, \vec{w}_m\}$ be bases for V and W respectively, and let $L: V \to W$ be linear. The matrix of L from \mathcal{B} to \mathcal{C} is the $m \times n$ matrix $[L]_{\mathcal{C} \leftarrow \mathcal{B}}$ defined by

Example. We've already looked at $V = \mathbb{R}^n$, $W = \mathbb{R}^m$, $B = S_n$, $C = S_m$. Standard matrix: $[L]_{S_m \leftarrow S_n}!$

From our previous computation, $[L(\vec{v})]_C = [L]_{C \leftarrow B}[\vec{v}]_B$.

What happens if we apply this definition to $L = id : V \to V$?

Example.
$$B = \left\{ \begin{bmatrix} 1 & 1 & -3 \\ 0 & 1 & -1 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 1 &$$

Example.
$$\beta = \{ |-x, |+x, |x^2 \}, |c| = \{ |-x^2, |x-1|, |+x+x^2 \} \}$$
 becomes for $\beta_2(R)$.

To compute $\beta_1 \in \beta_2 : C_1(1-x^2) + C_2(x-1) + C_3(1+x+x^2)$

$$= (c_1-c_2+c_3) + (c_2+c_3)x + (c_3-c_1)x^2 = 1-x, \text{ and } 1+x, \text{ and } x^2 \}$$

$$\begin{bmatrix} |-1| &$$

How do we convert from C to B, if we know how to convert from B to C? Well ... maybe $\rho_{c \leftarrow B}$ is invertible?