
July 22 (Lecture 18)

Overview: We’ll continue looking at eigenvalues and eigenvectors
of matrices. Then, we’ll use them to formalize what we meant when
we said “this basis was nice for a given matrix”.

Learning Goals:

Compute eigenvalues and eigenvectors of matrices.

Precisely define what it means to diagonalize a matrix.

Correctly diagonalize matrices!

As you’re getting settled:

You’ll (hopefully) have all of the material for Homework 10
after today.

Reflection 12 will be available at the end of our class today.

Please fill out the CES! I appreciate your feedback.

Friday, July 23 O�ce Hours will be 12:00-1:00 pm instead of
11:30-12:30.

• Test 2 marking is Hill ongoing (sorry) .



Diagonalization
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“nice”. Let’s elaborate on that idea.

Definition. Let A,B 2 Mn,n(R). We say thatA andB are similar
when
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Section 6.2
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there exists an invertible Matrix P such that F' AP -- B ( or AP= PB) .



Theorem (6.2.1). Let A,B 2 Mn,n(R) be similar matrices. Then
A and B have:

1.

2.

3.

4.

Example.

Definition. Let A 2 Mn,n(R). We say that A is diagonalizable
when

Example.
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The same determinant the same rank ( and nullité

the same eigenvalues
The same trace (th sum of the Th- BR diagonal entries) .

For A =
5 la -6

a
?! ! ,

D=
200

: : : :

det : -6
,
e- rats : 2

, -3,1 ,
rank =3

,
trace = 0

If { = | ,

'

and F :
20

☐ o ,
for Q = ! Y we have

EQ = If and QF = 2f .

det (Q)--2=10 ,
so Q is invertible

,
so E and Fare similar !

⇒ det = 0 ; eigenvalues are 2,0 ; rank =L ; trace
= 2

.
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A is similar to a diagonal Matrix . In other cardo

,
Here exists an

Invertible Matrix Pond a diagonal matrix D such that P-' AP=D.
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A is diagonalisable! with P =
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and D= o 30
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Theorem (6.2.2). Let A 2 Mn,n(R).

Proof idea.

Procedure. To diagonalize a matrix A (if possible):

1.

2.

3.

4.

5.

Theorem. Let A 2 Mn,n(R).

(6.2.3) A is diagonalizable if and only if

(6.2.4) If A has n distinct (real) eigenvalues, then
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p .362 A is diagonalisable Cover R)
if and on} if three is a basis for IR" consisting of e- vecs for A.

( ) If p
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AP=D for some P = Ù ,
. .
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then { I.
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0f eigenretors!
( ) If {À
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. In} is abois of e-reco /For at , then set D= j
, ,
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Compute e-Vals for A (using characteristic polynomial la(7) )

For each e- Val 7
, Compute a bois for EACH .

If
you

don't have enough LI e-vec> (or the are Compute
-Vals)

, this A is not diagonalisable (over IR) .

Decision Point {
Othrwise , A is diagonalrable .

Out th LI e-vus into a
Matrix P as columns

.

D =p
-'
Ap is a diagonal Matrix whose entris are the

-valo of A corresponding to th columns of P .

(don't heed to Compute t' AP except to check our anxious
)
.
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for each e-val X of A
,
th algebriac

and geometric multiplicités of I are equal .

A is diagonalisable .
( over R) .



Example. Let G =
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5. Determine whether or not G is

diagonalizable, and if it is, find an invertible matrix P and a diagonal
matrix D such that P�1

GP = D.
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Question 5

D. find e- rats! det /G-AI]) = -1-2+2--2 %! - ta -2

det 0 trio = ( 1-a) det
- a +,

= ( 1- 7)( ✗+2×+1-4 )
exp!

-2 2-1-7

=/ 1-7)(72+27+3)=(1-7)/7+3717 - 1)

= - (7-1517+3)=0

⇒ 7=1 (alg.mu/t-- 2) ,
7=3 (algmult =/ )
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.
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Ô
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314) . By Thoren 6.2.3 , algmult-geomultforalle-vab.si G- is diagonalisable!
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.
D= i o o i > invertible, and p

-'
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010 =D

.
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www

7=1 ✗=-3



Example. Let H =


3 �2
2 7

�
. Determine whether or not H is

diagonalizable, and if it is, find an invertible matrix P and a diagonal
matrix D such that P�1

HP = D.

Example. Let K =


3 1
5 7

�
. Show that K is diagonalizable. What

is K10?
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1) find e- vais : det ( H - JI
,
) = det 3-a -7

y g. y
= 72-107+21+4=72-107+25 = ( t - 5)

•
= 0

.

⇒ 7=5 (alg multi) .
geomult

--1
.

2) find Euls) :
- a -2 Tps

,

Il

a si oo
⇒ Euls) -- Span { Y } .

3) aly malt of 7=5 > geo
malt of 7=5 ,

therefore it is not diagonalisable .

Applications : Section 6.3

1) detlk-5.la) = det 3-✗ '

g- g.y
= À -107+25-5=72-107+16 = (1- 8)

'

(1-2)=0 .

⇒
7=812

,
both w / alg malt -_ 1. ⇒ this diagonalisable by , Theorem 6.2.4 .
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.
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General !


