July 19 (Lecture 17)

Overview: Our first task today is to finish up working with determinants, including seeing how they relate to invertibility. After that, we'll move on to our last big section of content: eigenvalues and eigenvectors of matrices!

Learning Goals:

- Relate determinants to invertibility.
- Precisely define and compute eigenvalues and eigenvectors of matrices.

As you're getting settled: • CES is available!

- Homework 9 is due tomorrow (Tuesday), at 11:30 pm.
- Homework 10 will be out tomorrow, due **Friday, July 30**, at 11:30 pm. It will be on material from last week and this week.
- After that, our final exam is on **Thursday, August 12**. More information to come closer to the beginning of the exam period.

Eigenvalues and Eigenvectors

Example. Let
$$A = \begin{bmatrix} 5 & 12 & -6 \\ 0 & -3 & 0 \\ 2 & -2 & -2 \end{bmatrix}$$
, $D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $S_{3} = \{\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}\}$,
and $\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ 0 \\ 1 \\ \vec{v}_{1} \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 2 \\ \vec{v}_{2} \end{bmatrix}, \begin{bmatrix} 3 \\ 0 \\ 2 \\ \vec{v}_{3} \end{bmatrix} \right\}$. S and \mathcal{B} are both bases for \mathcal{R}^{3} .

- Surname A-F: compute $A\vec{v}_i$. Surname G-M: compute $A\vec{e}_i$.
- Surname N-S: compute $D\vec{v_i}$. Surname T-Z: compute $D\vec{e_i}$.

$$A_{v_{1}}^{\perp} = \begin{bmatrix} 4\\ 0\\ 0\end{bmatrix} = \partial v_{1}^{\perp}, \quad A_{v_{2}}^{\perp} = \begin{bmatrix} -3\\ -3\\ -6\end{bmatrix} = -3v_{0}, \quad A_{v_{3}}^{\perp} = \begin{bmatrix} 3\\ 0\\ 2\end{bmatrix} = 1v_{3}$$

$$A_{v_{1}}^{\perp} = \begin{bmatrix} 5\\ 0\\ 2\end{bmatrix}, \quad A_{v_{2}}^{\perp} = \begin{bmatrix} -3\\ -3\\ -2\end{bmatrix}, \quad A_{v_{3}}^{\perp} = \begin{bmatrix} -b\\ 0\\ -2\end{bmatrix}, \quad$$

Take-away. The boois is "nice" for A, and the boois S is "nice" for D.

P. 348 **Definition.** Let $A \in M_{n,n}(\mathbb{R})$. If $\vec{v} \in \mathbb{R}^n$ is a non-zero vector such that $A\vec{v} = \lambda \vec{v}$, then we say that λ is an <u>eigenvalue</u> for A and \vec{v} is an <u>eigenvalue</u> for A and \vec{v} is an <u>eigenvalue</u> for A and \vec{v} is an <u>eigenvector</u> for A corresponding to λ . (Sometimes we say that (λ, \vec{v}) is an eigenvalue-eigenvector pair).

Example. For $A_1 a_1 - 3$, and 1 are e-vals, $\omega | e-vecs \vec{V}_1, \vec{V}_2, \vec{V}_3$. For D_1 also $a_1 - 3$, 1 are e-vals, $\omega | e-vecs \vec{e}_1, \vec{e}_2, \vec{e}_3$ respectively.

For I_n : Let $\vec{v} \in \mathbb{R}^n$ be non-zero. Then $I_n \vec{v} = \vec{v} = 1 \cdot \vec{v}$. So, 1 is an e-val for I_n , and every non-zero vector is an e-vec for I_n , corresponding to 1.

Example. Do eigenvalue/eigenvectors always exist, for any matrix? Let $B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Let $\vec{v} = \begin{bmatrix} a \\ b \end{bmatrix} \neq \vec{o}$. Then: $B\vec{v} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$, and $B\vec{v} \cdot \vec{v} = (-b)(a) + (a)(b) = 0$. Thus, $B\vec{v}$ and \vec{v} are orthogonal! $B\vec{v} \neq \vec{o}$ (since $\vec{v} \neq \vec{o}$), and so $B\vec{v}$ is <u>not</u> a scalar multiple of \vec{v} So B has no <u>real</u> e-vals/e-vecs! " <u>But</u>: $B\begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\$

Take-away: We'll Stick to real e-vals/c-vecs in this course, but the complex numbers are the "natural habitat" for e-vals le-vecs.

 $p.350 \quad \text{Theorem (6.1.1). Let } A \in M_{n,n}(\mathbb{R}). A [real] \text{ number } \lambda \text{ is an e-val} for A if and only if def(A-\lambda I_n) = 0.$

If λ is an eigenvalue of A, then all non-zero solutions to $(A - \lambda I_n)\vec{v} = \vec{o}$ are all of k eigenvectors for A corresponding to λ .

Example. For
$$A = \begin{bmatrix} 5 & 12 & -6 \\ 0 & -3 & 0 \\ 0 & -a & -a \end{bmatrix}$$
, we have: $det(A - \lambda I_3) = det\begin{bmatrix} 5 - \lambda & 12 - 6 \\ 0 & -3 - \lambda & 0 \\ a & -a & -a -\lambda \end{bmatrix}$
$$= -(3 + \lambda) det\begin{bmatrix} 5 - \lambda & -6 \\ 0 & -a - \lambda \end{bmatrix} = -(\lambda + 3)((5 - \lambda)(\sqrt[3]{a} - \lambda) + 12)$$
$$= -(\lambda + 3)(-10 + 2\lambda - 5\lambda + \lambda^2 + 12) = -(\lambda + 3)(\lambda^2 - 3\lambda + \lambda)$$
$$= -(\lambda + 3)(\lambda - a)(\lambda - 1) = 0.$$

=> e-vals of A are -3, 2,1 (as we saw before).

$$\begin{array}{l} \hline \text{Computation of even Vectors for } \\ A_{=} \begin{bmatrix} 5 & 12 & -6 \\ 0 & -3 & 0 \\ 2 & -9 & -a \end{bmatrix}, \quad \lambda = -3, 2, 1. \quad \text{What are fix eigen vectors} \\ \hline \underline{\lambda = -3} : A_{-}(-3)I_{3} = \begin{bmatrix} 8 & 12 & -6 \\ 0 & 0 & 0 \\ 2 & -9 & -4 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{Null}(A + 3I_{3}) = \text{span} \begin{bmatrix} 0 & 1 & 1/2 \\ 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{Null}(A - 2I_{3}) = \text{span} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{Null}(A - 2I_{3}) = \text{span} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{Null}(A - 2I_{3}) = \text{span} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{Null}(A - I_{3}) = \text{span} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{Null}(A - I_{3}) = \text{span} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{Null}(A - I_{3}) = \text{span} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{Null}(A - I_{3}) = \text{span} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{Null}(A - I_{3}) = \text{span} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{Null}(A - I_{3}) = \text{span} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{Null}(A - I_{3}) = \text{span} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{Null}(A - I_{3}) = \text{span} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{Null}(A - I_{3}) = \text{span} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{Null}(A - I_{3}) = \text{span} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{Null}(A - I_{3}) = \text{span} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{Null}(A - I_{3}) = \text{span} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{Null}(A - I_{3}) = \text{span} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{Null}(A - I_{3}) = \text{span} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{span} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{span} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{span} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{span} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{span} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{span} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{Null} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{span} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{span} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{span} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{span} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad = \rangle \text{span} \begin{bmatrix} 0 & 0 & 0 \\ 0$$

p. 350 **Definition.** Let λ be an eigenvalue for A. The <u>eigenspace</u> for A corresponding to λ , denoted E_{λ} is the set of all eigenvectors for A corresponding to λ , as well as the zero vector. In short: $\mathcal{E}_{\lambda} = \mathcal{E}_{A}(\lambda) = \operatorname{Null}(A - \lambda I)$.

Example. Let
$$B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 be as before.
 $C_{B}(\lambda) = \det(B - \lambda I) = \det \begin{bmatrix} -\lambda & -1 \\ 1 & -\lambda \end{bmatrix} = \lambda^{2} + 1$, which two no real roots
 $= \sum N_{0} \text{ real } e - \operatorname{vals}^{1}$
But: B has complex $e - \operatorname{vals}_{1}$ as $\lambda^{2} + 1 = (\lambda - i)(\lambda + i)$.
 $\lambda = i : \begin{bmatrix} -i & -1 \\ 1 & -i \end{bmatrix} \xrightarrow{\text{res}} \begin{bmatrix} 1 & -i \\ 0 & 0 \end{bmatrix}$, so $\mathcal{E}_{B}(i) = \operatorname{span} \mathcal{E}\begin{bmatrix} i \\ 1 \end{bmatrix}$. similarly, $\mathcal{E}_{B}(-i) = \operatorname{span} \mathcal{E}\begin{bmatrix} -i \\ 1 \end{bmatrix} \mathcal{E}$.

Example. Let
$$C = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
. What is $C_{c}(\lambda)$?
 $C_{c}(\lambda) = \det \begin{bmatrix} -\lambda & 10 \\ 0 & \lambda & 1 \end{bmatrix} = (-\lambda)^{3} = -\lambda^{3}$. Setting $C_{c}(\lambda) = 0$ says that the only e-val for C is $\lambda = 0$.
(Repeated 3 timest)
Uhat is $\mathcal{E}_{c}(0)$?
 $C_{-o}I_{3} = C = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, in RREF! => $\mathcal{E}_{c}(0) = \operatorname{Null}(C - \sigma I_{3}) = \operatorname{Null}(C)$
 $= \operatorname{Span} \mathcal{E} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. dimension = 1

Definition. Let $A \in M_{n,n}(\mathbb{R})$ have an eigenvalue λ . The *algebraic* multiplicity of λ is the number of times λ is repeated as a root of $C_{A}(\lambda)$. $\left[\prec_{A}(\lambda) \right]$

The geometric multiplicity of λ is the dimension of the eigenspace for λ : dim $(\varepsilon_{\mathbf{A}}(\lambda))$. $[\delta_{\mathbf{A}}(\lambda)]$

Example.

p. 354

For A, alg. mult. of λ=d,-3, 1 (Lere all = 1. yea. mult. of λ=d,-3, 1 (Lere all = 1.
For C, alg. mult of λ=0 (100 3. geo. mult of λ=0 (100 3.
For B, alg. mult of λ=i,-i are both 1. Geo. mult of λ=i,-i are both 1. $\frac{Note:}{So th sum of the algebraic multiplices is also equal to n!}$

- p. 355 Theorem. Let $A \in M_{n,n}(\mathbb{R})$.
 - (6.1.2) If λ is an e-val for A, then $| \leq \text{geo. mult. of } \lambda \leq \text{alg. mult. of } \lambda$.
 - (6.1.3) If $\lambda_1, \ldots, \lambda_k$ are distinct e-vals for A, with e-vecs $\vec{v}_{1}, \ldots, \vec{v}_k$ Corresponding to $\lambda_1, \ldots, \lambda_k$ respectively, then $\xi \vec{v}_1, \ldots, \vec{v}_k \xi$ is linearly dependent.
- p. 355 **Theorem** (6.1.4 (3.5.4)). Let $A \in M_{n,n}(\mathbb{R})$. The following are equivalent:
 - 1. A is invertible.
 - 11. O is not an eigenvalue for A.
 - Proof. A is invertible $\langle = \rangle Null(A) = \xi \delta \xi = Null(A-OI_n) = \xi_A(o)$ $\langle = \rangle O$ is not an eval for A.

Example.

• By Thorem 6.1.4, Since ve know that A, B, X did not have 0 as an eigenvalue, we see that A, B, X are all invertible.

- On the other hand, C is not invertible (Uhich us could see 10 mg RREF, etc).
- o For A, we could compute the eigenvectors $\{\begin{bmatrix} 2\\ 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ 2\\ 3\end{bmatrix}, \begin{bmatrix} 3\\ 2\\ 2\end{bmatrix}, \begin{bmatrix} 3\\ 2\\ 3\end{bmatrix}, \begin{bmatrix} 3\\ 2\\ 3$

Eigenvalues/Eigenvectors of Linear Maps: We can define e-vals and e-vecs for linear maps in exactly the same way as for matrices (hence the copy/paste of the definition)!

Definition. Let $L: V \to W$ be a linear map. If $\vec{v} \in V$ is a non-zero vector such that $L(\vec{v}) = \lambda \vec{v}$, then we say that λ is an *eigenvalue* (or e-val) for L and \vec{v} is an *eigenvector* (or e-vec) for L corresponding to the eigenvalue λ . The pair (λ, \vec{v}) is sometimes called an eigenvalue-eigenvector pair.

Example. Consider the projection map $\operatorname{proj}_{\vec{n}} : \mathbb{R}^3 \to \mathbb{R}^3$ where $\vec{n} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$. Note that $\operatorname{proj}_{\vec{n}}(\vec{n}) = \frac{\vec{n} \cdot \vec{n}}{\|\|\vec{n}\|^2} \vec{n} = \vec{n} = 1\vec{n}$, so 1 is an eigenvalue for $\operatorname{proj}_{\vec{n}}$! With e-vec \vec{n} . $\vec{n} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$. Then, if \vec{v} is orthogonal to \vec{n} , we have $\operatorname{proj}_{\vec{n}}(\vec{v}) = \frac{\vec{n} \cdot \vec{n}}{\|\|\vec{n}\|^2} \vec{n} = \vec{0} = 0\vec{n}$. So, all non-zero vectors orthogonal to \vec{n} are also eigenvectors for $\operatorname{proj}_{\vec{n}}$, corresponding to eigenvalue o! The plane $\vec{n} \cdot \vec{x} = 0$ is the eigenspace $\operatorname{Eproj}_{\vec{n}}(0)$.

n.×=0 ×1

Example. Let $L_A : \mathbb{R}^3 \to \mathbb{R}^3$ be the map $L_A(\vec{v}) = A\vec{v}$, with $A = \begin{bmatrix} 5 & 12 & -6 \\ 0 & -3 & 0 \\ 2 & -2 & -2 \end{bmatrix}$. Used do the eigenvectors look like?