July 19 (Lecture 17)

Overview: Our first task today is to finish up working with determinants, including seeing how they relate to invertibility. After that, we'll move on to our last big section of content: eigenvalues and eigenvectors of matrices!

Learning Goals:

- Relate determinants to invertibility.
- Precisely define and compute eigenvalues and eigenvectors of matrices.

As you're getting settled: \bullet CES is available!

- Homework 9 is due tomorrow (Tuesday), at 11:30 pm.
- Homework 10 will be out tomorrow, due **Friday, July 30**, at 11:30 pm. It will be on material from last week and this week.
- After that, our final exam is on **Thursday**, **August 12**. More information to come closer to the beginning of the exam period.

Eigenvalues and Eigenvectors

Example. Let
$$
A = \begin{bmatrix} 5 & 12 & -6 \ 0 & -3 & 0 \ 2 & -2 & -2 \end{bmatrix}
$$
, $D = \begin{bmatrix} 2 & 0 & 0 \ 0 & -3 & 0 \ 0 & 0 & 1 \end{bmatrix}$, $S_3 = \{\vec{e}_1, \vec{e}_2, \vec{e}_3\}$,
and $B = \begin{Bmatrix} 2 \ 0 \ 1 \end{Bmatrix}$, $\begin{bmatrix} 0 \ 1 \ 2 \end{bmatrix}$, $\begin{bmatrix} 3 \ 0 \ 2 \end{bmatrix}$. *S* and *B* are both bases for \mathcal{L}_3 .\n
$$
\mathcal{L}_4 = \begin{bmatrix} 2 \ 0 \ 0 \ 0 \end{bmatrix}
$$
, $\begin{bmatrix} 2 \ 1 \ 2 \end{bmatrix}$, $\begin{bmatrix} 0 \ 0 \ 2 \end{bmatrix}$. *S* and *B* are both bases for \mathcal{L}_5 .\n
$$
\mathcal{L}_6 = \begin{bmatrix} 2 \ 0 \ 0 \ 0 \end{bmatrix}
$$
, $\begin{bmatrix} 2 \ 0 \ 0 \ 0 \end{bmatrix}$, $\begin{bmatrix} 2 \ 0 \ 2 \ 2 \end{bmatrix}$. *S* and *B* are both bases for \mathcal{L}_6 .\n
$$
\mathcal{L}_7 = \begin{bmatrix} 2 \ 0 \ 0 \ 0 \end{bmatrix}
$$
.

-
• Surname A-F: compute $A \vec{v}_i.$ Surname G-M: compute
 $A \vec{e}_i.$
- Surname N-S: compute $D\vec{v}_i.$ Surname T-Z: compute $D\vec{e}_i.$

$$
A\vec{v}_1 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = 0\vec{v}_1, \qquad A\vec{v}_2 = \begin{bmatrix} -3 \\ -3 \\ -6 \end{bmatrix} = -3\vec{v}_2
$$
\n
$$
A\vec{e}_1 = \begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix} = 0\vec{v}_1, \qquad A\vec{e}_2 = \begin{bmatrix} 12 \\ -3 \\ -6 \end{bmatrix} = -3\vec{v}_2
$$
\n
$$
A\vec{e}_3 = \begin{bmatrix} -6 \\ 0 \\ -3 \end{bmatrix} \qquad A\vec{e}_3 = \begin{bmatrix} -6 \\ 0 \\ -3 \end{bmatrix} \qquad A\vec{e}_3 = \begin{bmatrix} -6 \\ 0 \\ -6 \end{bmatrix} \qquad A\vec{e}_3 = \begin{bmatrix} 3 \\ 0 \\ -6 \end{bmatrix}
$$
\n
$$
A\vec{e}_3 = \begin{bmatrix} 6 \\ 0 \\ -6 \end{bmatrix} \qquad A\vec{e}_3 = \begin{bmatrix} 6 \\ 0 \\ -6 \end{bmatrix} \qquad A\vec{e}_3 = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} \qquad A\vec{e}_3 = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}
$$
\n
$$
A\vec{e}_4 = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} = 0\vec{e}_4
$$
\n
$$
A\vec{e}_5 = \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix} = 0\vec{e}_5
$$
\n
$$
A\vec{e}_6 = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} = 0\vec{e}_6
$$
\n
$$
A\vec{e}_7 = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} \qquad A\vec{e}_8 = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix} = 0\vec{e}_7
$$
\n
$$
A\vec{e}_8 = \begin{bmatrix} 6 \\ 0 \\ -3 \end{bmatrix} = 0\vec{e}_8
$$
\n
$$
A\vec{e}_9 = \begin{bmatrix} 6 \\ 0 \\ -6 \end{bmatrix} \qquad A\vec{e}_9 = \begin{bmatrix} 6 \\ 0 \\ -6 \end{
$$

Take-away. The bood is "nice" for A, and the bood S is "nice" for D.

■
$$
λ∈ ℝ
$$
 [Focusing on real quanities]

Definition. Let $A \in M_{n,n}(\mathbb{R})$. If $\vec{v} \in \mathbb{R}^n$ is a non-zero vector such that $A\vec{v} = \lambda \vec{v}$, then we say that p. 348 $(e\text{-val})$ $(e\text{-val})$ If $\vec{v} \in \mathbb{R}^n$ is a non-zero vector such
2 is an <u>eigenvalue</u> for A and \vec{v} is an eigenvector for A corresponding to). (Sometimes we say that (x, t) is an eigenvalue-eigenvector pair).

> $\bf Example.$ For $A_1 \partial_1 - 3$, and I are e -vals, w e -vecs \vec{V}_1 , \vec{V}_2 , \vec{V}_3 . For Diabo ² , -3, ^I are e- rats , w/ e- reco é, , éz, éz respectively.

For \mathcal{I}_n : Let $\vec{v} \in \mathbb{R}^n$ be non-zero.Then $T_n \vec{v}$ = \vec{v} = 1. \vec{v} . So, 1 is an e-val for T_{n_1} and e<u>very</u> non-zero vector is an e-vec for In, corresponding to 1.

Example. Do eigenvalue/eigenvectors always exist, for any matrix? Let $B =$ $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Let $\vec{v} = \begin{bmatrix} u \\ b \end{bmatrix} \neq \vec{0}$. Then: \vec{b} BÙ = σ -I $\begin{bmatrix} 0 & -1 \ 0 & 0 \end{bmatrix}$ and $B\dot{v}\cdot\dot{v} = (-b)(a) + (a)(b) = 0$. Thus, $B\dot{v}$ and \dot{v} are orthogonal! $B\dot{\phi} \neq \dot{D}$ (since $\dot{\phi} \neq \dot{\phi}$), and so $B\dot{\phi}$ is $\underline{no} \dot{b}$ a schar multiple of $\dot{\phi}$. o ... so B has no <u>real</u> e-vals/e-vecs! $B(f : B \mid \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mid \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ $\begin{array}{c} 0 & -1 \\ 1 & 0 \end{array}$ $\begin{array}{c} 0 & -1 \\ 1 & 0 \end{array}$ = $\begin{array}{c} 0 & -1 \\ 1 & 0 \end{array}$ = $\begin{array}{c} 0 & -1 \\ 1 & 0 \end{array}$ = $\begin{array}{c} 0 & -1 \\ 1 & 0 \end{array}$ = $\begin{array}{c} 0 & -1 \\ 1 & 0 \end{array}$ = $\begin{array}{c} 0 & -1 \\ 1 & 0 \end{array}$ = $\begin{array}{c} 0 & -1 \\ 1 & 0 \end{array}$ = $\lambda = \pm i \quad \omega \quad \lambda = \pm i$ $i^{2} = -1$ $B \begin{bmatrix} -i \\ i \end{bmatrix} =$ $\overline{}$ $\overline{}$ $\begin{bmatrix} \cdot \cdot \\ \cdot \end{bmatrix} = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} = (-1) \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

Take-away: We'll stick to real e-vas/c-vecs in this course, but the Complex numbers are the "natural habitat" for e-vals le-vecs.

Finding eigenvalues/eigenvectors: For example, let
$$
x = \begin{bmatrix} a & a \\ 0 & -1 \end{bmatrix}
$$
.

\n6. Find \sqrt{x} need to solve $X\vec{v} = \lambda\vec{v}$ for λ and \vec{v} .

\nRecwise: $x\vec{v} - \lambda\vec{v} = \frac{x\vec{v} - \lambda\vec{v}_0\vec{v}}{x} = \frac{(x - \lambda\vec{v}_0)\vec{v}}{x} = \frac{3}{5}$.

\n6. guarantee that there is a non-zero solution \vec{v} to \hat{v} , then use require Null $(x - \lambda\vec{v}_0) \neq \frac{5}{5}$.

\n7. The condition is equivalent, via Theorem 3.5.4, to $x \cdot \lambda\vec{v}$ form. In particular, the result is a non-zero solution of \vec{v} from the result.

\n8. The condition is equivalent, we have a condition of the equation $\lambda_0 = \lambda_0 + \lambda_1\lambda_0 = 0$.

\n9. The result is a non-zero solution \vec{v} to λ_1 then use requires Null $(x - \lambda\vec{v}_0) \neq \frac{5}{5}$.

\n1. The condition is equivalent, we can find that the second solution \vec{v} is a non-zero solution.

\n1. The result is a non-zero solution \vec{v} to λ_1 when use requires Null $(x - \lambda\vec{v}_0) \neq \frac{5}{5}$.

\n1. The condition is equivalent, we can find that the second solution \vec{v} is a non-zero solution.

\n1. The equation is $\lambda_0 = \lambda_0 + \lambda_1\lambda_0 = 0$.

\n1. The solution is $\lambda_0 = \lambda_0 + \lambda_0 = 0$.

\n2. The solution is $\lambda_0 = \lambda_0 + \lambda_0 = 0$.

\n3. The solution is $\lambda_0 = \lambda_0 + \lambda_0 = 0$.

\n4. The solution is $\lambda_0 = \lambda_0 + \lambda_0 = 0$.

\n5. The solution is $\lambda_0 = \lambda_0 + \lambda_0 = 0$.

\n6. The solution is $\lambda_0 = \lambda_0$

Theorem (6.1.1). Let $A \in M_{n,n}(\mathbb{R})$. A [real] number λ is an e-val
for A if and only if def(a-2In)=0. p.350

> If λ is an eigenvalue of A, then all non-zero solutions to $(a \cdot \lambda I_n)\vec{r} = \vec{0}$ are all of the eigenvectors for A corresponding to 2.

Example. For
$$
A = \begin{bmatrix} 5 & 10 & -6 \ 0 & -3 & 0 \ 0 & -a & -a \end{bmatrix}
$$
, we have: $det(A - \lambda I_3) = det \begin{bmatrix} 5 - \lambda & 12 - 6 \ 0 & -3 - \lambda & 0 \ a & -a \end{bmatrix}$
\n $= -(3 + \lambda) det \begin{bmatrix} 5 - \lambda & -6 \ 0 & -a - \lambda \end{bmatrix} = -(2 + 3)(5 - \lambda)(a - \lambda) + 12$
\n $= -(2 + 3)(-10 + 2\lambda - 5\lambda + \lambda^2 + 12) = -(2 + 3)(\lambda^2 - 3\lambda + 2)$
\n $= -(2 + 3)(\lambda - a)(\lambda - 1) = 0$.

 $=$ > e -vals of A are -3, 2, 1 (as we see the letole)!

Computation of exen	Re													
\n $\begin{bmatrix}\n a & b \\ c & 1\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & -a \\ b & -a \\ c & 0\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n 2 & -6 \\ 0 & -3 & 0 \\ 0 & 0 & 0\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n 2 & -6 \\ 0 & 1 & -16 \\ 0 & 0 & 0\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & -1 \\ 0 & 1 \\ 0 & 0\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & -1 \\ 0 & 0 \\ 0 & 0\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & -1 \\ 0 & 0 \\ 0 & 0\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & -1 \\ 0 & 0 \\ 0 & 0\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & -1 \\ 0 & 0 \\ 0 & 0\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & -1 \\ 0 & 0 \\ 0 & 0\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & -1 \\ 0 & 0 \\ 0 & 0\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & -1 \\ 0 & 0 \\ 0 & 0\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & -1 \\ 0 & 0 \\ 0 & 0\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & -1 \\ 0 & 0 \\ 0 & 0\n \end{bmatrix}$ \n	\n $\begin{bmatrix}\n a & -1 \\ 0 & 0 \\ 0 & 0\n \end{bmatrix}$ \n

p.350 **Definition.** Let λ be an eigenvalue for A. The *eigenspace* for A corresponding to λ , denoted E_{λ} is the set of all eigenvectors for A corresponding to 2, as well as the Zeco vector. T_n shock: $\epsilon_{\lambda} = \epsilon_{A}(\lambda) = \text{Null}(A - \lambda I).$

Definition. Let $A \in M_{n,n}(\mathbb{R})$. The *characteristic polynomial* of $p.352$ A is det $(A - \lambda I)$. $Nohafion:$ Textbook: $C(\lambda)$ ·Joseph: C (2) (to specify the

Example. Let
$$
B = \begin{bmatrix} 0 & -1 \ 1 & 0 \end{bmatrix}
$$
 be as before.
\n $C_{\beta}(x) = \frac{\partial e}{\partial x} = \frac{\partial e}{\partial x} \begin{bmatrix} -x & -1 \ -x & -x \end{bmatrix} = \frac{x^2 + 1}{x}$, which has no real roots
\n $= \frac{2}{\sqrt{2}}$ and $\frac{2}{\sqrt{2}}$.
\n $\begin{bmatrix} 2x + 1 & 1 \ 1 & -1 & 0 \ 1 & -1 & 0 \end{bmatrix}$ is $C_{\beta}(x) = \frac{x^2 + 1}{2}$. Similarly, $\epsilon_{\beta}(x) = \frac{x}{2}$

Example. Let
$$
C = \begin{bmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{bmatrix}
$$
. What is $C_c(\lambda)$?
\n
$$
\begin{bmatrix} C_c(\lambda) = \text{det} \begin{bmatrix} -210 \\ 0 \end{bmatrix} = (\lambda)^3 = -\lambda^3
$$
. Setting $C_c(\lambda) = 0$ say that μ_0 and μ_1 and μ_2 and μ_3 are the C is $\lambda = 0$.
\n
$$
\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}
$$
\n
$$
\begin{bmatrix} C_c(\lambda) = \text{det} \begin{bmatrix} -210 \\ 0 \end{bmatrix} \end{bmatrix}
$$
 is $(\lambda)^3 = -\lambda^3$. Setting $C_c(\lambda) = 0$ says that μ_0 and μ_1 and μ_2 are the C is $\lambda = 0$.
\n
$$
\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}
$$
\n
$$
\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}
$$

Definition. Let $A \in M_{n,n}(\mathbb{R})$ have an eigenvalue λ . The *algebraic* multiplicity of λ is the number of times λ is repeated as a root of $C_A(\lambda)$. $\left[\alpha_{\mathsf{A}}(\lambda)\right]$

The geometric multiplicity of λ is the dimension of the eigenspace $\int_{\mathbb{R}^d} \chi_{\lambda} \, d\mu \left(\xi_{\mathsf{A}}(\lambda) \right)$, $\left[\chi_{\mathsf{A}}(\lambda) \right]$

Example.

p. 354

• For A, alg. mult. of $2-3$, $3-3$, i were all = 1. geo. mwh . of $\lambda = a, -3, 1$ were all = 1. . For C, alg. $muth$ of $\lambda = 0$ was 3.
geo. $muth$ of $\lambda = 0$ was only 1. $\lceil -\frac{1}{2} \cdot \frac{1}{2} \cdot$

Note: Uhat's the degree of CA(2)? Turns out, it's equal to n! So the sum of the algebraic multiplieds is also equal to $\dot n$.

- **Theorem.** Let $A \in M_{n,n}(\mathbb{R})$. p. 355
	- $(6.1.2)$ If λ is an e-val for A , then $1 \nvdash$ geo. mult. of λ .
	- $(6.1.3)$ If $\lambda_1, \ldots, \lambda_k$ are distinct e-vals for A, with e-vecs $\vec{v}_{i_1...i}\vec{v}_{k_1}$ Corresponding to λ_1 " Ik respectively, then $\tilde{\xi}_{\gamma_1,\dots,\gamma_K}$ $\tilde{\zeta}_{\gamma_5}$ linearly dependent.
- **Theorem** (6.1.4 (3.5.4)). Let $A \in M_{n,n}(\mathbb{R})$. The following are *equivalent:* p. 355
	- *1. A is invertible.*
	- 11. O is not an eigenvalue for A.
	- $Proof.$ A is invertible $\langle 2 \rangle$ Null(A) = $\{63 = \text{Null}(A \cdot 0 \cdot L) = \ell_A(o)$ $\langle z \rangle$ O is not an e-val for A.

Example.

° By Thoren 6.1.4 , since ve know that ^A , B, ^X did not have ^O cs un eigervalue, Ue see that A.B, X are all invertible .

 \Box

On the other hand, C is not invertible (which we could see Wing RREF, etc).

o For A, we could compute the eigenvectors $\frac{2}{5} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 3 \\ 2 \\ 3 \end{bmatrix}$, and by Thorem 6.1.3, this set of Vectors is LT_1 so we obtain "for free" (book Thm) that its actually a book for R^3 .

Eigenvalues/Eigenvectors of Linear Maps: We can define evals and e-vecs for linear maps in exactly the same way as for matrices (hence the copy/paste of the definition)!

Definition. Let $L: V \to W$ be a linear map. If $\vec{v} \in V$ is a non-zero vector such that $L(\vec{v}) = \lambda \vec{v}$, then we say that λ is an *eigenvalue* (or e-val) for L and \vec{v} is an *eigenvector* (or e-vec) for L corresponding to the eigenvalue λ . The pair (λ, \vec{v}) is sometimes called an eigenvalueeigenvector pair.

Example. Consider the projection map $proj_{\vec{n}}$: $\mathbb{R}^3 \to \mathbb{R}^3$ where $\vec{n} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. When the theory $\phi(\vec{n}) = \frac{\vec{n} \cdot \vec{n}}{\|\vec{n}\|^2} \vec{n} = \vec{n} = 1\vec{n}$, so 1 is an eigenvalue for $proj_{\vec{n}}!$, with e -vec \vec

 $h * = 0$

Example. Let $L_A : \mathbb{R}^3 \to \mathbb{R}^3$ be the map $L_A(\vec{v}) = A\vec{v}$, with Example. Les LA. ---
 $A = \begin{bmatrix} 5 & 12 & -6 \\ 0 & -3 & 0 \\ 2 & -2 & -2 \end{bmatrix}$. x_3 la

87