
July 8 (Lecture 15)

Overview: We’ll start today with dimension (finally). After seeing

that definition and some examples, we’ll extend the concept of linear

maps to linear maps between abstract vector spaces.

Learning Goals:

Precisely define and calculate dimension of a vector space.

Explain (using theorems) how dimension relates to spanning

sets, linearly independent sets, and bases.

Define and work with linear maps between abstract vector

spaces.

As you’re getting settled:

Homework 8 is due tomorrow (Friday, July 9), at 11:30 pm.

Homework 9 to come out tomorrow, due Tuesday July 20th at

11:30 pm.

Test 2 is next Thursday! July 15. It will be available on Crowd-

mark 10:00 am to 8:00 pm Pacific time but you’ll only get 1.5

hours to do it, same as last time. I’ll try to post some targetted

practice problems that I think might be helpful.

Watch for HW or Test instructions that say “You may use a

computer or calculator to perform [specific computations]”!

o Reflection to available after class !



Theorem. Let V be a non-trivial vector space with finite dimen-
sion.

(4.3.2)

(4.3.5)

(4.3.6)

Theorem (4.3.7). Let V be a vector space with dim(V ) = n � 1.

1.

2.

3.

Example. Let A =


1 0

1 2

�
and B =


0 2

�2 0

�
.

Let W = span
�
A,AT ,B,BT , A + B

 
. Find dim(W ).

Solution.
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(not {ô} )

p . 252 ,

257

If T is a spanning set of K rector> for V
,
then some sub>et of T is a basis for V

.

If S is a LI set in twt Fever this dim (v) Vector> , th s can be extended to a

basis for V.

If W is a subspace of V,
thon dim (U) E dim(v) .

" Goldilocks Thoren"

p . 259

If SEV his more then n Vector>
, the S is lineary dependent.

If SEV has Fever than n rectus , the s cannot span to

If BEV has exactly n Vector> then B is linearly independent if and orig if B spam V.

(+ 4)
.

Observe : by part 1- of 4.3.7, since 5 > Dim ( Maa (IR))
= 4

,
thus spanning set

is not LI .

Note : At B is in Span { A ,
B}

,

BE - B
,
and A-AI [ °, ] = ¥ Bi so AT = A + f-BE spam{A ,

B}
.

⇒ W = Span { A,
B} .

Ue can show that { A ,
B} is LI , so it is also a bois for U !

⇒ dim(u) =3 .

o If we wanted to extend { A , B} into a basis for Maa (R) ,
then by 4.3.7 (3) , we simply reed to add two more rectus

to get a LI set .

(trg [: :] and [ ; !]) .



General Linear Maps

Definition. Let V and W be vector spaces. A map L : V ! W is

a linear map (or transformation) when

Example.

Definition. Let L : V ! W be a linear map between vector spaces

V and W .

The range of L, denoted Range(L), is

The null space of L, denoted Null(L), is

72

Section 4.5

p. 273

for all Îiy EV,
s.tt R ,

Ue have L ( si + tg) = ski) + 1-Lcj) .

☐ linear Maps from
IR
" to Rm !

c d
= a + b.✗ + ai + dis .

( cf.HU
8
,

Q5( b) !
-

° L : Maa (R) s Ps (R) , L
" b

Linear? . . .

o id : V > V
,
id (I)-- I ( th identify map ) is linear.

° Z : V ' V , 2-(I) -_ Jr ( th Zero map) is
linear

.

• transpose and Matrix multiplication (by
a fixed matrix) are both linear ! (Theorem 3.1.2

,

3.1.4)

• E :p
,
(IR) s Pg (IR) , E ( a.+ . . .

+ as✗5) = a. + aax
>
+ ayx

"
.

( only even term! )

Linear? E (sp(x) + tg(x))
= EGsa.ttb.)+ . . . + ( sas +tbs)✗5)

= sao-itbo-lsaa-tbahi-lsay-tb.nl) × "
= s (a. + aaxz + ai,✗4) + 1- (botbzxtbnx

")

= SECpcx)) + 1-Elqui)

L

>

%. :] ••
> a

p . 274

{Ki) : Ier } Eu . *

{ ☒ c-V : Lci) -- Ôw} EV
*



Example.

Definition. Let L : V ! W be a linear map between vector spaces

V and W .

The rank of L, denoted rank(L), is

the nullity of L, denoted nullity(L), is
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{ :P, (IR) > Pg (R) , { (a. + . . . + as✗5) = a. + a> ✗
'
+ a
,
×
"

.

When is { (p(x)) = 0 ? > ao = az = ay = 0 . No restrictions on a , / azi
as .

do +
"

da✗
'
+ Ay×

"

> Null (E) = { a. ✗ + a,✗' + as✗
5
: a

, ,
a } ,

a
,
c- R} = Span {× ,×? X

'} .

For Range(E) , /et botbaxtbyx
" C- B- (R) . Euery pk) L B- (IR) such that a. = bo , ai-bz.ae, -- by satisfis

E (pk)) = botba✗4- bc,✗
4
.

> Range (E) = Span {
I
, x
'

, ×
" } .

Define th trace of A- [ { § to be tr (A) = a + b ( can généralise to nxn ) .

Tte trace is a linear map
from Max (R) to IR

"

.

SLE !

Null(tr) : if tr(A)= o
,
then at D= o

,

and no other restrictions .

- d b> a b

. ,
= Null (tr) = span{ ? • [% , % } .

c d
=

Range (tr) : what are th output values of Tr ? Note that tr
'

o
! = 1

,
and tr is linear

,
so for

any
CER ,

fr6 [% = ctr % = c. 1- = c.

⇒ Range (tr) = R .

p . 276

Dim (Rangell)) .

dim (Null (U) .

For L : R
"

> Rm
,
rank(L) = Dim (Range (U) = dim ( Cd([L]))

= tank ([L]) .



Theorem (4.5.2, Rank-Nullity).

Proof.

Example.
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(df
.

Theorem 3.4.9)
.

p .
277 Let L : v SW be a linear map

between

abstract vector spaces ul dim (v) in .

Then
, rank (L) + nullity(L) = h = dim (v) .

First
,
we can find a basis { f. , . . . . ta} for Null (L) ( so nullity (L) = K) , which we can extend

to a bosio { Ù
,
.
. .

,
ÛK

,

Ù
µ , , . . . ,Ùn} for V . (Theorem 4.3.5)

.

*

Now
,

if Ù C-Range (L) ,
then by definition we have

Ù = LCÙ) =L ( air
,
-1

. . _

+ autre + aw,Ùn, + . . .
+ anion)

= a
µ,
LCÙK, ,) -1 . . . + anh(Ùn) ,

since L is linear and th À C- Null (L) .

⇒
Range (L) -- Span { Llosa,) , . .

.

, Llùn)} ça
" this set S

.

S spam Range (L) is
S LI ?

-

Welt
,
if Ô = an,

L (Ùktit . . . + anL(Ùn) = L(aw,Ùktit . . _
+ anÙn) ,

thn "KÙK +it ' ' ' +
anÙn = b.À + . . . + brin C- Null (L)

,
and all of the coefficients are O (by

» )
.

⇒ si> LI , this a basis for Range (L) , and thvyranklh-nulh.ly
(L) = n - K -1k = n .

•

c d
= a- 2b + cà + (a-d)×? ( Lis linear!" Maa (R) > BAR)

,
( (

ab

cd
= 0 ⇒ {

a-abo
To Compute Null(L) , we have :

" b
c- o

a- D= 0

t - 2 O O rar ops
I O o - | a d '

y
=

%d
> O O I O s O l o

-1/2 .

) b

go
= d § .

I O O - I O O I O

free variable!

Translate back to matrices : Null (L) = span { j
'

q } .

⇒ Nullityllt- 1 .

>
basis w/ 1- element

.

By Rank
-Nullity Theorem : tank (L) = Dim (Mulk)) - 1=4 - t =3 .

Thus
,
to find abois for Range (L) ,

we simplyneed to find 3 LI Vector> in Range (L) !

(Trytooeewhy { 1 , ×? ×
]} works .

Theorem 4.3.7 Part 34)
.


