July 5 (Lecture 14)

Overview: Many of the same concepts we had for \mathbb{R}^n hold also for abstract vector spaces! And we'll finally start to define *dimension*, and see why holding off on the definition means we can see it as a much more general concept than previously.

Learning Goals:

- Identify abstract vector spaces (and subspaces thereof) and explain how the definitions apply in different contexts.
- Work with spanning sets, linear independence, and bases in abstract vector spaces.
- Precisely define dimension of a vector space.

As you're getting settled:

- Homework 8 is out, due Friday, July 9.
- Heads up: Test 2 is next week! Thursday, July 15. We'll be using the same test format as Test 1 in terms of availability period, duration of the test, rough number of questions, etc. Material to be assessed will be finalized on Thursday.
- Great work on the reflection! Thanks for giving it a shot.
 Picking up the pace, due to air loot class. I'll be sure to post filled in examples that get skipped in class.

Example. Is $p(x) = 2x - x^2$ an element of

span
$$\{1 + x, x + x^2, 1 - x - x^2\}$$
?

Solution.
Rephrase: is
$$p(x) = \frac{\partial x}{\partial x} = c_1(1+x) + c_2(x+x^2) + c_3(1-x-x^2)^2$$

 $= (C_1 + C_3) + (C_1 + C_2 - C_3) + (c_2 - C_3) + (c_3 - C_3) + (c_3 - C_3 - C_3) + (c_3 - C_3) + (c_3$

- $\begin{array}{ll} p_{,\,249} & \text{Definition. Let } V \text{ be a vector space. A subset } S \subseteq V \text{ is a spanning} \\ set \text{ for } V \text{ when } & \forall = \text{ span } S. \end{array}$
 - If $S = \{\vec{v}_1, \dots, \vec{v}_k\} \subseteq V$, then S is linearly dependent when there are c_1, \dots, c_k not all zero such that $c_1\vec{v}_1 + \dots + c_k\vec{v}_k = \vec{o}$. S is linearly independent when S is not linearly dependent. (i.e. if $c_1\vec{v}_1 + \dots + c_k\vec{v}_k = \vec{o}$, the $c_1 = \dots = c_k = 0$).

A basis for a vector space V is a lineary independent spanning set for V.

Note. Since subspaces are vector spaces, the above definitions apply to subspaces.

Example. Find bases for each of the following subspaces.

- 1. span $\{1+2x^2, -x, 2-3x+4x^2\} \subseteq P_2(\mathbb{R})$
- 2. $\{\vec{0}\}$ (where $\vec{0}$ is in some vector space V)

3.
$$\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a = 2d, a - b - c + d = 0 \right\} \subseteq M_{2,2}(\mathbb{R})$$

Solution.

1) Do we have a spanning set? Yes!
$$S = \{1 + 3x^{n}, -x, 3 + 3x + 4x^{2}\}$$
 is a spanning set for de subspace, by
definition. Is it LI?
 $C_{n}(1+3x^{2})+C_{n}(-x)+C_{n}(3-x+4x^{2})=0!+0x+0x^{2})$
 $\rightarrow (c_{n}+3c_{n})+(c_{n})x_{n}+(c_{n})x^{2}=0+0x+0x^{2}$
 $\rightarrow SLE! \longrightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $\implies ba_{n}$ so not LI.
 $\underbrace{But}_{n}, S^{n} \in \{1+3x^{n}, -x, 3\}$ is LI, and we know $3-3x+4x^{2}$ is a LC of polynomials in S', so spans = spans'. (ie S' is
a spanning set for spans). Therefore, s' is a basis for spans, by
2) Here, is cannot be in any basis for $\{53\}$, because $16 = 0$ for all scalars t.
Idea: We have a combination of no vectors. By convention, we define an "empty" LC to be 8.
In this space, the compty set $\{53\}$ is a basis for $\{56\}$.
S) First, let's use the definition to find a spanning set. $\{\left[\begin{array}{c} a & b \\ c & d \end{array}\right]: a = 3d, a - b - c + d = 03$.
we get to below give: $\left[\begin{array}{c} 1 & 0 & -4 \\ 0 & -4 \end{array}\right] = c \begin{bmatrix} 1 & 0 & -4 \\ 0 & -4 \end{array} = 0 \longrightarrow \begin{bmatrix} 1 & 0 & -4 \\ 0 & -4 \end{array} = 0 \longrightarrow \begin{bmatrix} 1 & 0 & -4 \\ 0 & -4 \end{array} = 0 \longrightarrow \begin{bmatrix} 1 & 0 & -4 \\ 0 & -4 \end{array} = 0 \longrightarrow \begin{bmatrix} 1 & 0 & -4 \\ 0 & -4 \end{array} = 0 \longrightarrow \begin{bmatrix} 1 & 0 & -4 \\ 0 & -4 \end{array} = 0 \longrightarrow \begin{bmatrix} 1 & 0 & 0 & -4 \\ 0 & -4 \end{array} = 0 \longrightarrow \begin{bmatrix} 1 & 0 & 0 & -4 \\ 0 & -4 \end{array} = 0 \longrightarrow \begin{bmatrix} 1 & 0 & 0 & -4 \\ 0 & -4 \end{array} = 0 \longrightarrow \begin{bmatrix} 1 & 0 & 0 & -4 \\ 0 & -4 \end{bmatrix} = c \begin{bmatrix} 0 & 0 & -4 \\$

p. 250 Theorem (4.3.1). Let $B = {\vec{v}_1, \ldots, \vec{v}_k}$ be a spanning set for a vector space V. Thus every vector in V can be written as a <u>Unique</u> LC of $\vec{v}_1, \cdots, \vec{v}_k$ if and only if B is linearly independent.

(=>) Suppose that every vector in V is a <u>unique</u> LC of $\vec{V}_1, ..., \vec{V}_K$. Thun, if $C, \vec{V}_1 + ... + C_K \vec{V}_K = \vec{O}$, since $C_1 = ... = C_K = 0$ is a solution, it must be the <u>only</u> solution, so B is linearly independent.

 $(\langle =)$ Suppose that B is [I. If $\vec{v} = c_1\vec{v}_1 + ... + c_k\vec{v}_k = d_1\vec{v}_1 + ... + d_k\vec{v}_{k_1}$ this by subtrating we have $(c_1 - d_1)\vec{v}_1 + ... + (c_k - d_k)\vec{v}_k = \delta$. Since B is [I], we see that $c_1 - d_1 = 0$ for all i_1 so that \vec{v} is united uniquely so a LC of the vectors in B.

p. 264 **Definition.** Let
$$B = {\vec{v}_1, \dots, \vec{v}_k}$$
 be a basis for a vector space V .
If $\vec{v} \in V$, the coordinates of \vec{v} are finally unique numbers c_1, \dots, c_k such that
 $\vec{v} = c_1 \vec{v}_1 + \dots + c_k \vec{v}_k$. The B-coordinate vector of \vec{v} is
 $\begin{bmatrix} \vec{v} \end{bmatrix}_B = \begin{bmatrix} c_1 \\ \vdots \\ c_k \end{bmatrix} \in \mathbb{R}^k$.

Example. We saw that $\partial - 3x + 4x^2 = \partial(1 + \partial x^2) + 3(-x)$, so $\left[\partial - 3x + 4x^2\right]_{3'} = \left[\partial \\ 3\right] \in \mathbb{R}^2$ (s¹ > 1 + $\partial x^2_1 - x$ > has two eluments).

"

p. 255 Theorem (4.3.4). Let V be a vector space u/ a finite biois. Then every bisis for V hio the same number of vectors.

Proof. Idea: Generalizing Theorem 2.3.4 to abstract vector spaces.

p.255 **Definition.** Let V be a vector space. If V has a basis with finite size, then the *dimension* of V, denoted $\dim(V)$, is the size of any basis for V. If V has no finite basis, that we say that \downarrow number of elements. V has infinite dimension (dim(v)=∞).

Example.

• dim
$$(\mathbb{R}^{3}) = 3$$
; uhy? $\{\xi_{n}^{2}, \xi_{n}^{2}, \xi$

Example. Revisiting Theorems 3.4.5/7/8: If A $\in M_{m,n}(\mathbb{R})$, then:

- $\dim((ol(A)) = \operatorname{rank}(A) = \dim(\operatorname{Ran}(A))$
- dim (Null(A)) = n-rank(A)
- dim (Null(A^T)) = m-rank(A)

Example. Find a basis for $V = \{p(x) \in P_2(\mathbb{R}) : p(-1) = 0\}$ and extend it to a basis for $P_2(\mathbb{R})$. What is dim(V)?

Solution. First, let's find a basis for V. IP $p(x) = a + bx + cx^{2}$, then 0 = p(-1) = a - b + c. SLE! $\begin{bmatrix} 1 & -1 & 1 \\ -1 & -1 \\ free variables}$ Back to p(x): $p(x) = (b-c) + bx + cx^{2} = b(1+x) + c(x^{2}-1)$. $= > V = span \underbrace{\mathbb{E}}_{x} + x^{2} - 13$. Set $c_{1}(1x) + c_{2}(x^{1}-1) = 0 = > \underbrace{\mathbb{E}}_{x=0}^{c_{1}} \underbrace{-1}_{x=0}^{c_{2}} \underbrace{-1}_{x=0}^{c_{2}}$

can be used as a work of proof	
Will be weful for	
other things in	
the course.	