July 5 (Lecture 14)

Overview: Many of the same concepts we had for R*ⁿ* hold also for abstract vector spaces! And we'll finally start to define *dimension*, and see why holding of f on the definition means we can see it as a much more general concept than previously.

Learning Goals:

- Identify abstract vector spaces (and subspaces thereof) and explain how the definitions apply in different contexts.
- Work with spanning sets, linear independence, and bases in abstract vector spaces.
- Precisely define dimension of a vector space.

As you're getting settled:

- Homework 8 is out, due Friday, July 9.
- Heads up: Test 2 is next week! Thursday, July 15. We'll be using the same test format as Test 1 in terms of availability period, duration of the test, rough number of questions, etc. Material to be assessed will be finalized on Thursday.
- Great work on th Reflection ! Thanks for $\binom{n}{2}$ it a shot.
- Picking up the pace, due to our loot class. I'll be sure to post filled-in exemples that get skipped in class .

Example. Is $p(x) = 2x - x^2$ an element of

$$
\text{span}\{1+x, x+x^2, 1-x-x^2\}
$$
?

- $P.249$ **Definition.** Let V be a vector space. A subset $S \subseteq V$ is a spanning set for V when $V = Span S$.
	- If $S = {\vec{v_1}, \dots, \vec{v_k}} \subseteq V$, then S is linearly dependent when $\downarrow \downarrow_{\text{true}}$ ore C_1 ... C_K not all Zero such that $C_1V_1 + ... + C_KV_K = 0$. 5 is linearly independent when 5 is not linearly dependent. $(i.e. if C_1\vec{v}_1 + ... + C_k\vec{v}_k = \vec{0}$, $\frac{1}{2}$ $C_1 = ... = C_k = 0$.

A basis for a vector space V is a lineary independent spanning set for V.

Note. Since subspaces are vector spaces, the above definitions apply to subspaces.

Example. Find bases for each of the following subspaces.

- 1. span $\{1+2x^2, -x, 2-3x+4x^2\} \subseteq P_2(\mathbb{R})$
- 2. $\{\vec{0}\}$ (where $\vec{0}$ is in some vector space $V)$

3.
$$
\left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a = 2d, a - b - c + d = 0 \right\} \subseteq M_{2,2}(\mathbb{R})
$$

Solution.

1) Do ve have a spanning set? Yes! ^s ⁼ { 1+2×2, - [×] , 2-3×+4×² } is ^a spanning >et forte subspace, by Definition . Is it LI? ^C , (1+2×2) ⁺ CaC- [×]) ⁺ ↳ (2-3×+4×2)=0 ⁰×+0×² > (c, ⁺ 2cg) ⁺ (- (a)✗ ⁺ lac, -14cg) ^X ⁼ 0+0×+0×2 > No, Sis not LI. ^O - I O Îl , l ^O a > SLE! > ' ° ° O I O . 2 ⁰ 4 ^O ^O ^O free variable! But , S' = { 1+2×² , - ✗ } ⁱ > LI , and we know 2-3×+4×² is ^a LC of polynomial> in ^s , so spams ⁼ spams " . (ie. S is a spanning set for spams). Therefore, s is ^a basis for spams . Il 2) thm . ^Ô cannot be in any basis for { ^Ô}, because to ⁼ ^o for all scalars t. Idea: what is a Linear Combination of no Vector? By convention , we define an empty" ^C to be ^Ô . In this sensei tu empty >et {} is ^a basis for { ô}. ^c ^d : ^a ⁼ 2d , a b - ^C -id ⁼ ⁰ }. 3) First, let's use tt defining restrictions to find ^a spanning set . { ^a ^b Ue get th following SLE : a- 2d ⁼ ⁰ a-b - C ⁺ d ⁼ ^O s ° ° - • FK , I ^O o q O ^I I z ° ^l l l ' , , [→] free variables! Uniting our solution in Matrix forn instead of ^a columns rector , we have : ^a b (^d ⁼ ad ^c -134 ⁼ , O - I ^I o ⁺ ^d ! } . c d so, we see that { ⁰ ^t ²] } span> our subspace . ⁱ o } / ^o ⁱ C D Is this set linear}independent ? Option 1 : Yes ! Look at te ⁰ - ^I pattern : for ^H same renson that we get I Vector > Whn Solving SLÉ /the matrices foin ^a LI >et. ² J Option ² : set c, ° l O ⁺ Ca ^o , ⁼ f00 . 24 ⁼ ⁰ Thn { c. ix. ⁼ ^o , from which we see that c. ⁼ Ca ⁼ ^o is Kong solution . Sages. { ? , } } } is linearlg independent, ^C , = 0 Cz = 0 Ths {[%' . [? ?]}is ^a basis for {[{ §]: a--ad , a-b- c+d=o}.

Theorem (4.3.1). Let $B = {\vec{v_1}, \dots, \vec{v_k}}$ be a spanning set for a p. 250 vector space V. This every vector in V can be united as a unique LC of $\vec{v}_1, \dots, \vec{v}_K$ if and only if B is linearly independent.

Proof. (=>) suppose that every vector in V is a <u>unique</u> LC of \vec{v}_1 , ..., \vec{v}_K . Thin, if $c_i\vec{v}_i$ +... + $c_k\vec{v}_K$ = 3, since c_i =...= c_K =0 is a solution, it must be the only solution, so to a linearly independent.

 $(<)$ Suppose that B is LI. If $\vec{v} = c_1\vec{v}_1 + ... + c_k\vec{v}_k = \vec{a_1}\vec{v}_1 + ... + \vec{a_k}\vec{v}_{k_1}$ that by stablishing we have $(c_1 - d_1)\vec{v}_1 + ... + (c_k - d_k)\vec{v}_k = \vec{a_1}\vec{v}_1 + ... + (c_k - d_k)\vec{v}_k = \vec{a_2}\vec{v}_1 + ... + \vec{a_k}\vec{v}_{k_1}$ I' Since B is LI, we see that ci-di=o for all i, so that is a uniter uniquely no a LC of the vectors in B.

p. 264 **Definition.** Let
$$
B = \{\vec{v}_1, \ldots, \vec{v}_k\}
$$
 be a basis for a vector space V . If $\vec{v} \in V$, the coordinates of \vec{v} are μ unique numbers $c_1 \cdots c_k$ such that $\vec{v} \in C_1 \vec{v}_1 + \ldots + C_k \vec{v}_k$. The coordinates of \vec{v} are ϕ with $C_1 \cdots C_k$ such that $\vec{v} \in C_1 \vec{v}_1 + \ldots + C_k \vec{v}_k$. The coordinates of \vec{v} is $\begin{bmatrix} \vec{v} \end{bmatrix} \in \mathbb{R}^k$.

Example. Ue saw that $3-3x+4x^2 = 9(1+8x^2) + 3(-x)$, so $[3 - 3x + 4x^2]_2 = 2$
 $[3 - 3x + 4x^2]_2 = 2$
 $[3 - 3x + 4x^2] = 8$
 $[3 - 3x + 4x^2]_2 = 8$

 $^{\prime\prime}$ \Box ["]

 $p.$ 255 Γ heore $\mathbf m$ $(4.3.4)$. Let $\mathsf V$ be a vector space $\mathsf v|$ a finite bois. Then every bosis for V hos the same number of Vectors.

Proof. <u>Idea</u>: Generalizing Thuorem 2.3.4 to abstract vector Spaces.

Definition. Let *V* be a vector space. If *V* has a basis with finite size, then the $dimension$ of V , denoted $\dim(V)$, is $\operatorname{\mathsf{H}}\nolimits$ size of $p.a55$ size, then the *armension* of V, denoted $\dim(V$), is the size of any
basis for V. I.f V has no finile basis, then we say that the land homber of ele $t \mapsto$ number of elements. V has infinite dimension ($dim(v) = \infty$).

Example.

$$
0 \dim (R^{3}) = 3; uby^{2} \{e, \frac{1}{16}, \frac
$$

Example. Revisiting Theorems $3.4.5/7/8$: If A E Mm.n (R), then:

- \cdot dim $((\rho \setminus (A)) = \text{rank}(A) = \dim (R_{\alpha\lambda}(A))$
- o dim $(Mu/(A)) = n$ -rank (A)
- o dim $(Nu/(A^T)) = m$ -rank (A)

Example. Find a basis for $V = \{p(x) \in P_2(\mathbb{R}) : p(-1) = 0\}$ and extend it to a basis for $P_2(\mathbb{R})$. What is dim(V)?

 $\rm Solution.$ First, $\begin{array}{lll} \text{1:2} & \text{1:3} \\ \text{1:3} & \text{1:4} \\ \text{1:4} & \text{1:5} \\ \text{1:5} & \text{1:6} \end{array} \begin{array}{lll} \text{1:5} & \text{1:6} \\ \text{1:6} & \text{1:6} \end{array} \begin{array}{lll} \text{1:5} & \text{1:6} \\ \text{1:6} & \text{1:6} \end{array} \begin{array}{lll} \text{1:6} & \text{1:6} \\ \text{1:6} & \text{1:6} \end{array} \begin{array}{lll} \text{1$ $[1 - 1]$ \rightarrow solutions to ΔE are $\begin{bmatrix} 8 \\ 6 \end{bmatrix}$ _ $\begin{bmatrix} c \\ p_c \end{bmatrix} = p \begin{bmatrix} p \\ p \\ l \end{bmatrix} + \begin{bmatrix} b \\ p \\ -l \end{bmatrix}$ free variables Free variables
Back to p(x): p(x)=(b-c)+bx+cx²= b(1+x)+ c(x²-1). \Rightarrow $V =$ span $\{1+x, x^2-1\}$ Set $C_1(1+x) + C_2(x^2 \cdot 1) = 0 \Rightarrow C_2 = 0 \Rightarrow C_1 = C_2 = 0$
Set $C_1(1+x) + C_2(x^2 \cdot 1) = 0 \Rightarrow C_2 = 0 \Rightarrow C_1 = C_2 = 0$ $\int_{\mathcal{S}^2}$ if $\int_{\mathcal{S}}$ 1+x, x²-1 } ; a <u>busis</u> for V . \Rightarrow dim(v)=2. ☐ Now to extend I to a basis for $P_2(\mathbb{R})$? Since $\{1, x, x^2\}$ is a basis for $P_a(\mathbb{R})$, we know that $\dim (P_2(\mathbb{R})) = 3$. . Try adding in a vector that's <u>not</u> in V! For example, 1 & V. It had in the letter that $\frac{1}{\lfloor \log_2 \rfloor}$ This, if span $\frac{1}{\lfloor \log_2 \rfloor}$ is not $P_2(\mathbb{R})$, this we could add a fourth vector (or more) to get a boris for $P_{\rm z}(\mathbb{R})$, which contradids Thm. 4.3.4.

 $\overline{\mathbb{X}}$