June 24 (Lecture 13)

Overview: Today we'll figure out how to compute matrix inverses! And then we'll move beyond \mathbb{R}^n and into the realm of *abstract vector spaces*.

Learning Goals:

- Correctly compute matrix inverses when possible.
- Identify abstract vector spaces (and subspaces thereof) and explain how the definitions apply in different contexts.

As you're getting settled:

- Homework 7 came out Tuesday evening (it was out on Brightspace before Crowdmark, whoops).
- Reflection will be available after class today! Due Friday night at 11:30 pm, as usual.
- · Current events note.

Chapter 4

Abstract Vector Spaces

What do \mathbb{R}^n and $M_{m,n}(\mathbb{R})$ have in common? • <u>Addition</u> • <u>Subspaces</u> (?) • <u>Multiplication</u> (of some type ? scalar) > <u>both</u> \mathbb{R}^n and $\mathbb{M}_{m,n}(\mathbb{R})$ have <u>entrycuise</u> • <u>addition</u> and <u>scalar multiplication</u>!

What other set of "things" also have those properties?

- O Differential EQ's, laplace transforms (soutrons to) o (Pawer) Series
- · Polynomials
- · Continuous functions on R

Many objects Weive seen before have "structure' like IR^h. We can add thim together or multiply by scalars (real #'s), Hure's a "zero" thing, etc. Notation for polynomials. "p(x)" or just "p'', so we compose:

•
$$P(R) = \text{set of all polynomials u}$$
 real coefficients.
• $P_n(R) = \text{set of all polynomials u}$ maximum degree n.
(degree of $p(x) = \deg(P(x)) = \log(P(x)) = \log(P(x))$

(abotract)

Definition. A vector space (over \mathbb{R}) is a set \mathcal{V} equipped with two operations, called vector addition and scalar multiplication and often denoted by + and \cdot (or just juxtaposition), such that for all $\vec{x}, \vec{y}, \vec{z} \in V$ and $s, t \in \mathbb{R}$:

1.
$$\vec{x} + \vec{y} \in V$$

2. $\vec{x} + \vec{y} = \vec{y} + \vec{x}$
3. $(\vec{x} + \vec{y}) + \vec{z} = \vec{x} + (\vec{y} + \vec{z})$
4. There is $\vec{0} \in V$ (the zero vector) such that $\vec{x} + \vec{0} = \vec{x}$
5. For each \vec{x} there is $-\vec{x} \in V$ such that $\vec{x} + (-\vec{x}) = \vec{0}$
6. $t\vec{x} \in V$ additive inverse of \vec{x} .
7. $s(t\vec{x}) = (st)\vec{x}$
8. $(s+t)\vec{x} = s\vec{x} + t\vec{x}$
9. $t(\vec{x} + \vec{y}) = t\vec{x} + t\vec{y}$
10. $1\vec{x} = \vec{x}$

The elements of V are called *vectors*. (The textbook prefers to use bold notation, like **x** or **y**.) Things like $c_1\vec{v_1} + c_2\vec{v_2}$ are still called *linear combinations*.

61

$$\mathbb{R}^{n}$$
 [(Theorem 1.4.1)
 $\mathbb{M}_{m,n}(\mathbb{R})$ (Theorem 3.1.1)

Example.

•
$$P_{n}(R) \stackrel{!}{\cdot} \stackrel{!}{\cdot} \stackrel{!}{\cdot} \stackrel{!}{\cdot} \stackrel{!}{\cdot} \stackrel{!}{\cdot} \stackrel{!}{\cdot} \stackrel{!}{\cdot} P_{n}(R) \stackrel{?}{\cdot} \stackrel{!}{\cdot} \stackrel{!}{\cdot} \stackrel{!}{\cdot} P_{n}(R) \stackrel{?}{\cdot} \stackrel{!}{\cdot} \stackrel{!}{\cdot} P_{n}(R) \stackrel{!}{\cdot} P_{n}(R) \stackrel{!}{\cdot} \stackrel{!}{\cdot} P_{n}(R) \stackrel{!}{\cdot} \stackrel{!}{\cdot} P_{n}(R) \stackrel{!}{\cdot} P$$

•
$$Z = \{ X_{L} : X_{1} X_{2} \in \mathbb{Z} \}$$

 $[1] \in Z_{1} \text{ but } [1] = [V_{2}] \notin D$ No not a vector space (over R).

Example. The following vector space probably looks *very* wrong.

- Let $E = \mathbb{R}_{>0} = \{x \in \mathbb{R} : x > 0\}.$
- For two elements x and y of E, define $x \oplus y$ to be $\times y$.

• For a real number α and $x \in E$, define αx to be χ° .

4 What is BEE?

8

3

62 Idea: Uhun looking of exponents & positive real numbers, multiplication and exponentiation look a lot like "addition" and "multiplication" (in R').

- p. 243 **Theorem** (4.2.1). Let V be a vector space. Then for all $\vec{x} \in V$ and $t \in \mathbb{R}$:
 - 1. $0\vec{x} = \vec{0}$ 2. $(-1)\vec{x} = -\vec{x}$ (the additive inverse of \vec{x}) 3. $t\vec{0} = \vec{0}$.

Proof.
Of Q.): We use the axioms!

$$(-1)\ddot{\chi} = (-1)\ddot{\chi} + \ddot{O} = (-1)\ddot{\chi} + \ddot{\chi} + (-\ddot{\chi}) = (-1)\ddot{\chi} + |\ddot{\chi} + (-\ddot{\chi}) = (-1+1)\ddot{\chi} + (-\ddot{\chi}) = (-1)\ddot{\chi} + (-\ddot{\chi}) = (-1)\ddot{\chi} + (-\ddot{\chi}) = (-1)\ddot{\chi} + (-\ddot{\chi}) = (-1+1)\ddot{\chi} + (-\dot{\chi}) = (-1+1)\ddot{\chi} + (-1+1)\ddot{\chi} + (-1+1)\ddot{\chi} = (-1+1)\ddot{\chi} + (-1+1)\ddot{\chi} + (-1+1)\ddot{\chi} + (-1+1)\ddot{\ddot{\chi} + (-1+1)} = (-1+1)\ddot{\chi} + (-1+1)\ddot{\chi} + (-1+1)\ddot{\ddot{\chi} + (-1+1)} = (-1+1)\ddot{\ddot{\chi} + (-1+1)} = (-1+1)\ddot{\ddot{\chi} + (-1+1)} = (-1+1)\ddot{\ddot{\ddot{\chi} + (-1+1)} = (-1+1)\ddot{\ddot{\ddot{\ddot{\ddot{\ddot{\chi} + (-1+1)}} = (-1+1)\ddot{\ddot{\ddot{\ddot{\ddot{\ddot{\ddot{\ddot{\ddot{\ddot{\ddot{\ddot{$$

Example. "-
$$\stackrel{\times}{\times}$$
" in different vector spaces:
• \mathbb{R}^{n} : "- $\begin{bmatrix} x_{i} \\ \vdots \\ x_{n} \end{bmatrix}$ " = $\begin{bmatrix} -x_{i} \\ \vdots \\ -x_{n} \end{bmatrix}$ • $\mathbb{M}_{m_{i}m}(\mathbb{R})$: "- \mathbb{A}^{n} =
• $\mathbb{P}(\mathbb{R})$: "- $\mathbb{P}(\mathbf{x})^{n}$ = - a_{o} + (- a_{i}) \mathbf{x} + ... + (- a_{n}) \mathbf{x}^{n}
if $p(\mathbf{x}) = a_{o}$ + ... + a_{n} \mathbf{x}^{n} .

p.244Definition. Let V be a subspace. A set $W \subseteq V$ is a subspace of(df. p. 51)V when W is non-empty and for all $\dot{x}, \dot{y} \in W$, $s, \dot{t} \in \mathbb{R}$,Use have $s\dot{x}$ the W.(W is closed under LC's). \hat{L} checkede.Equivalently.W is a subspace of W when V is a subspace of W when V is a subspace of V when V is a subspace of V when V is a subspace of W when V is a subspace of V when V is a subspace of V.

Equivalently, W is a subspace of V when W is a subset of V that is also a vector space under the same operations to V.

Example. Show that $U = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} : a, b, c \in \mathbb{R} \right\}$ is a subspace of $M_{2,2}(\mathbb{R})$. **Solution.** Is V non-empty? Yo: $\begin{bmatrix} \circ & \circ \\ \circ & \circ \end{bmatrix} \in V$ (a do = c = 0). Is V dosed under LCs? Let $\begin{bmatrix} \circ & \circ \\ \circ & c \end{bmatrix} \in V$, s, tere.

 $S \begin{bmatrix} a & b \\ o & c \end{bmatrix} + t \begin{bmatrix} d & e \\ o & f \end{bmatrix} = \begin{bmatrix} sa & sb \\ o & sc \end{bmatrix} + \begin{bmatrix} td & te \\ o & te \end{bmatrix} = \begin{bmatrix} sa + td & sb + te \\ o & te \end{bmatrix} \in V.$

=> yes, U is closed under LC's, and threfore V is a subspace

Example. Show that $C = \{a + bx^3 : a, b \in \mathbb{R}\}$ is a subspace of $P_3(\mathbb{R})$.

Solution.

Is C non-empty? Yes!
$$O = O + Ox^3 \in C$$
, as $O \in \mathbb{R}$.
Is C closed under LC's? Let $a + bx^3$, $C + dx^3 \in C$, $s, f \in \mathbb{R}$.
Thun: $s(a+bx^3) + f(c+dx^3) = (sa+fc) + (sb+fd)x^3 \in C!$
 $\in \mathbb{R}$ $\in \mathbb{R}$ $\in \mathbb{R}$
So YES, C is closed under LC's, and the C is a subspace of $P_3(\mathbb{R})$.

Example. Why isn't $\{ax + x^2 : a \in \mathbb{R}\}\$ a subspace of $P_2(\mathbb{R})$? $\circ I_{1'3} \xrightarrow{not}\$ that it's empty. $\circ N_{obt}\$ closed under scalar Multiplication! $ex. X + x^2 \to in + oct, but$ $a(x + x^2) = 2x + 2x^2 \to in + oct, but$ $a(x + x^2) = 2x + 2x^2 \to in + oct, but$ **Example.** Which of the following are subspaces?

- V, as a subset of any vector space V ges by definition!
- $\{\vec{0}\}$, as subset of any vector space V yes by Thur. 4.2.1, browned up.

•
$$\mathbb{R}^2$$
, as a subset of \mathbb{R}^3 No! Uhy? \mathbb{R}^2 is not a subset of \mathbb{R}^3 .
If $\dot{\mathbf{x}} = \begin{bmatrix} x_1 \\ x_2 \\ 0 \end{bmatrix}$: $x_1, x_2 \in \mathbb{R}$, as a subset of \mathbb{R}^3 yes.
(If looks like \mathbb{R}^2 , but now if is actually a subset of \mathbb{R}^3 .)

Definition. Let $S = {\vec{v}_1, \ldots, \vec{v}_k}$ be a set of vectors in a vector p. 249 space V. The span of S, denoted span S, is the set

 $\{c_1\vec{v}_1 + \cdots + c_k\vec{v}_k : c_1, \ldots, c_k \in \mathbb{R}\}.$

Theorem (4.2.2). Let $S = {\vec{v_1}, \ldots, \vec{v_k}}$ be a set of vectors in a p.246 vector space V. Then span S is a subspace of V.

Proof.
First,
$$\vec{0} = 0\vec{v}, + \dots + 0\vec{v}_n \in \text{span}S$$
, so spans is non-empty!
Thun, let $\vec{a}, \vec{v}, + \dots + \vec{a}_K \vec{v}_K$, $\vec{b}, \vec{v}, + \dots + \vec{b}_K \vec{v}_K \in \text{span}S$, and $\vec{s}, t \in \mathbb{R}$. Le have:
 $\vec{s}_{\vec{a}} + \vec{b} = (\vec{s}_{\vec{a}}, \vec{v}, + \dots + (\vec{s}_{\vec{a}K})\vec{v}_K + (t_{\vec{b}})\vec{v}_1 + \dots + (t_{\vec{b}K})\vec{v}_K = (\vec{s}_{\vec{a}}, +t_{\vec{b}})\vec{v}_1 + \dots + \vec{v}_K \in \text{span}S$
so spans is closed under LC's b
This it is a subspace of V.
65