June 24 (Lecture 13)

Overview: Today we'll figure out how to compute matrix inverses!
And then we’ll move beyond R" and into the realm of abstract vector
spaces.

Learning Goals:
e Correctly compute matrix inverses when possible.

e Identify abstract vector spaces (and subspaces thereof) and ex-
plain how the definitions apply in different contexts.

As you’re getting settled:

e Homework 7 came out Tuesday evening (it was out on Brightspace
before Crowdmark, whoops). (ke e W, ~F30pm )

e Reflection will be available after class todaAuy! Due Friday night
at 11:30 pm, as usual.
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Chuplr 4

Abstract Vector Spaces

What do R" and M,, ,(R) have in common?
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What other set of “things” also have those properties?
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Definition. A vector space (over R) is a set ¥ equipped with two
operations, called vector addition and scalar multiplication and
often denoted by + and - (or just juxtaposition), such that for all
x,y,Z €V and s,t € R:
1. Z+yeV
2. Z+y=y+2
3. (Z4+y)+ 7=+ (J+2)
4. There is 0 € V (the zero vector) such that Z + 0 = &
5. For each Z there is —# € V such that &+ (—&) =0
6. tx €V mANVe inderse of % .
7. s(tx) = (st)T
8. (s+1)% = s& + t&
9. T+ 9y) =tr+ty
10. 1z =2
The elements of V' are called vectors. (The textbook prefers to use
bold notation, like x or y.) Things like ¢19 4+ co05 are still called
linear combinations.
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Example.
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Example. The following vector space probably looks very wrong.

o et E=R.o={zeR : x>0}
] 2 L\w t,xpmm\& \u
e For two elements x and y of £, define @y to be xy.

J
e For a real number o and = € E, define ax to be * -
or A@©X
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0.a%y Theorem (4.2.1). Let V' be a vector space. Then for all ¥ € V
and t € R:

2. (‘\W( = -% 0 (e cddhve e of %)

Proof.
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Ox+(3) = O+ () = %
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P2 Definition. Let V' be a gfhspace. A set W C V' is a subspace of
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Example. Show that U = { [(G)L l;] ca,b,c€E R} is a subspace of
M;5(R).
Solution.

Example. Show that C' = {a +bx? : a,b€ ]R} is a subspace of
P(R).

Solution.
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Example. Why isn't {az +2? : a € R} a subspace of Py(R)?
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Example. Which of the following are subspaces?

e 1/ as a subset of any vector space V' BQ\Q 8, ARV
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e R2 as a subset of R? Nol \'\\“fﬁ? R 1 0ov o sdosdy o R
— = :

W3-Dlest, S d )

b8
ﬁ X1
/ L ® To|  x1,m9 € R 3, as asubset of R Yes\
/ 0 (—L\' \OL\(\B \'N\Q, \Rl ) \O\Ar Nows 'A- D O\L\'\I\D\\\\-} N
X

Sose e “{5,)

p.a4q  Definition. Let S = {1,..., 0} be a set of vectors in a vector
space V. The span of .S, denoted span S, is the set

{ery + -+t o c1,...,c € R}

p.a4, Theorem (4.2.2). Let S = {v1,...,U;} be a set of vectors in a
vector space V. Then span S s a subspace of V.

Proof.
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