June 17 (Lecture 11)

Overview: Today we'll get started on subspaces associated to linear
maps and matrices (more connections between all of these “linear”
things), and then talk about “invertible” matrices.

Learning Goals:

e Define and compute subspaces associated to linear maps and
matrices.

e Define invertibility for matrices and check if a matrix is invert-

ible.

As you’re getting settled:
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e Test 1 marking to be finished today (sorry it’s not quite done

yet); when you do get your marks back, please be sure to check
the marking and let me know if you have questions or concerns.

e Homework 6 is due Tuesday night, of course.
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e This week’s Reflection will be available after class, due Friday
night as usual. This week it’s a bit of a “halfway survey” on
the class; thanks in advance for providing feedback!
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Invertible Matrices

Motivation. Is there an analogue to solving “ax = b” for Ax = b?
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p.aor  Definition. Let A be an n x n matrix (so A is square). We say

that A is invertible when e exiks tn fixen Modre B such Yo
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Example. Consider the following 2 x 2 matrices:
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Example. Suppose A = [Z 2] . When is A invertible, and in that

case what is A~1?

Example. Let A =
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How can we determine if a larger matrix, 3 X 3 or bigger, is invertible?

59
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Proof. Bu\\;\gom B¢ e’ iners® for B Then  Ac=T =RA. Then

b 1= B0 = (B = TC=C. (e &-f'=0)
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0306 Theorem (3.52). I8 88 E Mg (R) Sudn P AB=Th, dhen BA=T,
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paoy  Theorem (3.5.3). Let A and B be invertible n X n matrices. Let
t € R be non-zero.

1Ay = K
2. (AB)"'=8#@"
3. (AT) 1 =(a')

Proof. T (s3):  RBXEK')" A(es) )N = AT
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