June 14 (Lecture 10)

Overview: The bulk of today will be spent on looking at how various geometrical operations in \mathbb{R}^2 and up can be seen as linear maps! Then we'll get started on subspaces associated to linear maps and matrices (more connections between all of these "linear" things).

Learning Goals:

- Identify certain geometric transformations as linear maps.
- Compute subspaces associated to linear maps and matrices.

As you're getting settled:

- I hope Test 1 went well for everyone! Marking is in progress, still.
- Homework 5 is due Tuesday night, 11:30 pm Pacific as usual.
- Homework 6 will be out Tuesday during the day.

Subspaces Associated to Linear Maps/Matrices 3.4

- Non-homog. SLE $A\vec{x} = \vec{b}$: "Is \vec{b} the output of f_A ?" $\int_{\mathbb{A}} (\vec{x}) \cdot \vec{b}$?
- Homog. SLE $A\vec{x} = \vec{0}$: "Does f_A send \vec{x} to $\vec{0}$?" $\oint_{\theta} (\vec{x}) = \vec{0}$?
- **Definition.** Let $L : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. The range (or 19.192 $image)$ of L is $range(L) = \{ L(\vec{x}) : \vec{x} \in \mathbb{R}^n \}$.
- The nullspace (or kernel) of L is $\mathbb{N}(\mathsf{L}) = \frac{1}{2} \times \mathsf{L}(\mathsf{R}^n : \mathsf{L}(\mathsf{R}) = \mathsf{D}^2$. $P.193$

Example. Let
$$
R_{\pi/4}: \mathbb{R}^2 \to \mathbb{R}^2
$$
 be CCW rotation by $\pi/4$.
\n
$$
\int_{\pi}^{x_{\tau}} \pi_{\pi_{\tau}}(\vec{x}) \arccos(\pi_{\pi/4}) = \frac{5}{2} R_{\pi/4}(\vec{x}) \cdot \vec{x} \in \mathbb{R}^2 \cdot \mathbb{R}^2 \cdot \mathbb{R}^2
$$
\n
$$
\int_{\pi}^{\pi} \pi_{\pi}(\vec{x}) \arccos(\pi_{\pi/4}) = \pi_{\pi/4}(\pi_{\pi}(\vec{x})) \cdot R_{\pi/4}(\vec{y}) \cdot \mathbb{R}^2
$$
\n
$$
\xrightarrow{\vec{y}} \qquad \text{(Botedig does not have a non-orthogonal form of } \vec{x}.
$$

Example. What are Range(proj_{*v*}) and Null(proj_{*v*}), if $\vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$?
 $\vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ \vec $\frac{1}{2}$
 $\frac{1}{2}$ $\frac{1}{2}$

$$
\text{P.143} \quad \text{Theorem (3.4.1).} \quad \text{If } L: \mathbb{R}^n \to \mathbb{R}^m \quad \text{is linear, then} \quad L(\vec{0}) = \vec{0}.
$$
\n
$$
\text{Proof. } \text{L}(\vec{0})^{\text{th}} \subset \text{L}(\vec{0})^{\text{th}} \quad \text{or} \quad L(\vec{0})^{\text{th}} \quad \text{or} \quad \vec{0}.
$$

Theorem. Let $L : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map, with standard *matrix* [*L*]*.* $p.193 - 194$

$$
(3.4.2)
$$
 Runge (L) is a subspace of \mathbb{R}^m .

(3.4.3) Null [L] is a subspace of Rh.

 $(3.4.4)$ \vec{x} \in Range (L) if and only if \vec{x} is a LC of t columns of [L].

(3.4.6) \vec{x} \in Null (L) if and only if $[L]$ \vec{x} = 0,

Proof. For 3.4.2, 3.4.3. Range (L) and Null(L) are non-empty, by 3.4.1. If s_it E R, L(x) and $L(y)$ to Range (L) , then:

> " $\overline{\mathbf{z}}$ "

 $sh(k)$ + $H(q)$ = $h(sk + kq) \in R$ ange (h) , by linearits of $h(q)$ I I S $A \in \mathbb{R}$, R , S C N N I C I $L(38+10) = SL(10) + 42$
 $L(38+10) = SL(10) + 42$
 $L(38+10) = SL(10) + 42$

Definition. Let $A \in M_{m,n}(\mathbb{R})$. The *four fundamental subspaces* associated to *A* are: p. 1951198 , 200

the *column space* of *A*, denoted Col(*A*): { Aà : c- Rh} ⁼ span { columns of ^A } ⁼ Range (fa) ^E Rm .

- \bullet the *nullspace* of *A*, denoted Null(*A*): $\left\{ \begin{array}{l} \zeta \in \mathbb{R}^n \quad \text{if} \quad \alpha \in \mathbb{R}^n. \end{array} \right.$
- \bullet the *row space* of *A*, denoted Row (A) :

Span $\{ \text{max of A} \}$ = Col $(\overline{A}^T) \subseteq \mathbb{R}^N$.

the *left nullspace* of *A*:

$$
\begin{cases}\n\ddot{x} \in \mathbb{R}^m : \dot{x}^T A = \dot{0}^T \dot{\zeta} = N \sqrt{N} \ (A^T) \in \mathbb{R}^m \\
1 \quad \text{(11.1)} \\
1 \quad \text{(2.1)} \\
1 \quad \text{(3.1)} \\
1 \quad \text{(4.1)} \\
1 \quad \text{(5.1)} \\
1 \quad \text{(6.1)} \\
1 \quad \text{(7.1)} \\
1 \quad \text{(8.1)} \\
1 \quad \text{(9.1)} \\
1 \quad \text{(9.1)}
$$

Note.

lxm men

All four of thoe sets are subspaces !

Example. Let
$$
A = \begin{bmatrix} 4 & 3 & 4 & 5 \ 2 & 5 & -4 & -7 & -5 \ -1 & -4 & 6 & 18 & 9 \ 1 & 0 & 4 & 18 & 7 \ \end{bmatrix}
$$
. Compute each of the four fundamental subspaces for A .
\n
$$
\frac{c d (A)}{}
$$
 is $ab - b$ span $\frac{c}{2} ab$ of $\frac{a}{3}$? $8a - rcb$ of $4a$. $6a - b$ and $6a + b$ form a . 1 is $a + 3$, $ab = 3$, $ab = 2$. 1 and $a + b = b$ form a . $a + 3$ and $a + 2$ form a . $a + 3$ and $a + 1$ are $a + 4$. $a + 3$ and $a + 1$ and $a + 1$ are $a + 4$. $a + 1$ is $a + 1$, $a + 1$ and $a + 1$ are $a + 1$. $a + 1$ is $a + 1$, $a + 1$ and $a + 1$ are $a + 1$. $a + 1$ is $a + 1$, $a + 1$ and $a + 1$. $a + 1$ is $a + 1$, $a + 1$ are $a + 1$. $a + 1$ is $a + 1$, $a + 1$ is $a + 1$, $a + 1$ are $a + 1$. $a + 1$ is $a + 1$, $a + 1$ is $a + 1$, $a + 1$, $a + 1$ are $a + 1$. $a + 1$, $a + 1$ is $a + 1$. $a + 1$, $a + 1$ is $a + 1$. $a + 1$, $a + 1$ is $a + 1$. $a + 1$, $a + 1$ is $a + 1$

Null
$$
(A^{T})
$$
 - Solve $AY = 5$ + $A^{T} = \frac{105}{100}$ $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} = C_{1}$ so Null $(A^{T}) = Span \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix}$

p. \mathfrak{g}_{θ} , \mathfrak{g}_{θ} , \mathfrak{g}_{θ} . Theorem. Let $A \in M_{m,n}(\mathbb{R})$. The number of vectors in a basis ခုထ for each of the fundamental subspaces is:

 $(3.4.5)$ (b) (A) : rank(A). $(3.4.7)$ Null (A) : n. rank (A) . Note: $Tanh (A^{T}) = \pm vectpos in \sim boxs for col(A^{T})$
 $Tanh (A^{T}) = ... Qout(A)$
 $= rank(A)$ $(3.4.8)$ Row $(h):$ rank (h) . \bullet Null (a^T) : m-rank (A) .

Proof.

$$
TanhK(A) = \# Lubing\text{ over in RREF for } A \to book \text{ for } Col(A).
$$

= # non-200 rass in RREF for A \rightarrow larges for RowlA).

- h -rank (A) = H of fac variable in sh' and h $A x = 6$ \rightarrow $h \wedge 3$ for N $m\cdot r$ ank (a) = $\# \circ f$ free variable in solin out to $A^1 y = 0 \implies b \circ \circ x$ for Null (A^1) . $= m-runk(Q)$
- **Theorem** (3.4.9, Rank-Nullity Theorem). Let $A \in M_{m,n}(\mathbb{R})$. 1f $106d$ there are k vectors in a basis for Null(A), then $rank(\mathfrak{h})$ + $k = n$.

Proof.
$$
rank(A) + k = rank(A) + n - rank(A) = n
$$

 $\eta\hskip-3.5pt/\hskip-3.5pt\eta$

Example. Suppose that B is a non-zero 3×7 matrix. What can you say about the number of vectors in a basis for $Col(B)$ or $Null(A)?$ \cdot rank(B) + # Vectors in a busis for Null(B) = 7
o some B himo 3 rows, rank (B) \leq 3. (also \geq 1). $\frac{1}{\sqrt{1-\frac{1}{2}}}\int c=0$ So $rank(B) \in \{1, 2, 3\}$, so the boois vectors for colles $\in \{1, 2, 3\}$,

Note.

It love's vectors for a subspace" 52 Solin of dimension of a subspace, to see later!

Summary. Let *A* be an $m \times n$ matrix, *B* the RREF of *A*, and *C* the RREF of A^T .

Theorem (3.4.10, Fundamental Theorem of Linear Algebra). Let $A \in M_{m,n}(\mathbb{R})$. We have:

1. $Null(A) = \begin{cases} \frac{1}{2} & \text{if } R^n : \overrightarrow{X} \cdot \overrightarrow{r} = 0 \\ 0 & \text{if } R \end{cases}$ for all $\overrightarrow{r} \in Ros(A)$

 $then$ $B, \bigcup B_9$ is a basis for \mathbb{R}^n .

 \mathcal{Q}
 \mathcal{Q} amogenal \mathcal{Q} . $\mathrm{Null}(A^T) = \frac{1}{2}$ is $\in \mathbb{R}^m$: $\vec{\varsigma}$. $\vec{\varsigma}$ = o for all $\vec{\varsigma}$ \in Cd (A)3. ,
* Compliments" 1 textbook $^{\prime\prime}$ $^{\prime\prime}$ is est union • put all elements together .

4. If B_3 is a basis for Col(A) and B_4 is a basis for Null(A^T), *then* $B_3 \cup B_4$ is a boois for \mathbb{R}^m . v. [i]
| _ج >

3. If B_1 *is a basis for* $Row(A)$ *and* B_2 *is a basis for* $Null(A)$ *,*

