June 3 (Lecture 8)

Overview: More matrix operations! We'll start trying to define multiplication of matrices, and time-permitting we'll move on to talking about linear maps.

Learning Goals:

- Correctly perform basic computations with matrices, including matrix multiplication.
- Precisely define and check for linear maps.

As you're getting settled:

- Test 1 next Thursday! Please see the Announcement posted on Brightspace for details.
- Please reach out and ask for help instead of violating academic integrity. (Maybe those of you attending class aren't the ones I need to be telling.)
- ° This week's Reflection will be up ^a bit later the Usual; sorry about that. (Look for it after 4pm today!).

Matrices and Linear Maps

Earlier, we motivated the matrix-vector product by saying that it was like a function. Let's make that idea precise. $\frac{1}{1}$ $\frac{C}{I}$

Definition. Let $A \in M_{m,n}(\mathbb{R})$. The function $f_A : \mathbb{R}^n \to \mathbb{R}^m$, $p.17a$ called the *matrix map* (or *mapping*) corresponding to A , is the map defined by $F_A(\vec{x}) = A\vec{x}$ for all $\vec{x} \in \mathbb{R}^n$.

Example. Let
$$
A = \begin{bmatrix} 1 & 2 & 3 \ -2 & -1 & 0 \end{bmatrix}
$$
. $\mathsf{R} \leftarrow \mathsf{M}_{a,3}(\mathbb{R})$.
\n
$$
\mathsf{S} \circ \mathsf{P}_{\mathsf{A}} \colon \mathsf{R}^3 \to \mathsf{R}^2 \cdot \mathsf{P}_{\mathsf{A}} \left(\begin{bmatrix} a \ b \end{bmatrix} \right) = \begin{bmatrix} 1 & 3 & 3 \ -3 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \ b \end{bmatrix} = \begin{bmatrix} 10 \ -5 \end{bmatrix} \in \mathsf{R}^2
$$
.
\n
$$
\mathsf{F}_{\mathsf{A}} \left(\begin{bmatrix} 0 \ 0 \end{bmatrix} \right) = \begin{bmatrix} 1 & a & 3 \ -a & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 3 & 3 \ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 3 & 3 \ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 \ -5 \end{bmatrix} \mathsf{F}_{\mathsf{A}}(\mathsf{e}_a) = \begin{bmatrix} 3 \ 0 \end{bmatrix}
$$
.

p. 173 **Theorem** (3.2.1).
\nLet
$$
A = [A_1 ... A_n] \in M_{m,n}(\mathbb{R})
$$
 and $\vec{x} \in \mathbb{R}^n$. $(\vec{x} = [\vec{x}_n^1])$.
\nThen $\hat{f}_A(\vec{x}) = x_1 A_1 + ... + x_n A_n = x_1 \hat{f}_A(\vec{e}_1) + ... + x_n \hat{f}_A(\vec{e}_n)$.
\n*Proof.* Since $\hat{f}_A(\vec{e}_1) = \beta \vec{e}_1 = \beta_1$, we have:
\n $\hat{f}_A(\vec{x}) = \beta \vec{x} = x_1 \beta_1 + ... + x_n \beta_n = x_1 \hat{f}_A(\vec{e}_1) + ... + x_n \hat{f}_A(\vec{e}_n)$.

Example continued.

$$
f^{\mathsf{B}}\left(\begin{bmatrix} 9 \\ 1 \end{bmatrix}\right) = 3f^{\mathsf{B}}(\mathbf{e}^{\prime}) + 7f^{\mathsf{B}}(\mathbf{e}^{\prime}) + 3f^{\mathsf{B}}(\mathbf{e}^{\prime})
$$

$$
f^{\mathsf{B}}\left(\begin{bmatrix} 9 \\ 1 \end{bmatrix}\right) = 3f^{\mathsf{B}}(\mathbf{e}^{\prime}) + 7f^{\mathsf{B}}(\mathbf{e}^{\prime}) + 9f^{\mathsf{B}}(\mathbf{e}^{\prime})
$$

Previously, we saw that $A(s\vec{v} + t\vec{w}) = sA\vec{v} + tA\vec{w}$. In a sense, the map f_A is "<u>preserving the structure</u>" of linear combinations. This idea is also important!

Definition. Let $L : \mathbb{R}^n \to \mathbb{R}^m$ be a function. We say that L is a

 $P.174$ $dinear$ map (or transformation) when f_0 , all $\vec{x}, \vec{y} \in \mathbb{R}^n$, and $s, f \in \mathbb{R}$,
We have $L(s\vec{x} + \vec{y}) = sL(\vec{x}) + L(\vec{y})$. Remind of Example. • Every motrix map^{ri}s linear (as noted previously). \cdot Let $L_1 : \mathbb{R}^n \to \mathbb{R}^n$ be given by $L_1(\vec{x}) = \vec{x}$. Linear? $L_1(S_{X}^3+t_{Y}^3)=S_{X}^2+t_{Y}^3=S(L_1(\vec{x}))+L(L_1(\vec{y}))$. V yes, L_1 is linear. \cdot Let $L_3: \mathbb{R}^n \to \mathbb{R}^n$, $L_3(\vec{x}) = 6$. Linear? L_2 $(sx + y) = 0$ $sL_2(x) + L_2(y) = s \cdot 0 + 0 = 0 + 0 = 0 = L_2(sx + y)$. V $y_{es, La}$ is linear. 0 Let $L_3 : \mathbb{R} \to \mathbb{R}^2$, $L_3(x) = x \begin{bmatrix} 4 \\ 3 \end{bmatrix} + \begin{bmatrix} 5 \\ 3 \end{bmatrix}$. Linear? Line in R² not Not linear! (4) $L_3(1)$ + (1) $L_3(1)$ = $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ + $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ + $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ + $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ + (1) + (1) + (1) + (1) \circ Let $L_{\mathbf{y}}: \pi^2 \to \pi^2$, $L_{\mathbf{y}}(L_{\mathbf{x},1}^{x_1}) = \int_{\mathbf{x}_1 - \mathbf{x}_2}^{\mathbf{x}_1 \times \mathbf{x}_2} 1 \cdot L_{\text{inleaf}}$? $L_{4}(a[\begin{array}{cc} 1 \\ 0 \end{array}]=\begin{bmatrix} a-3 \\ a-3 \end{bmatrix}=\begin{bmatrix} a \\ 0 \end{bmatrix}$. $2L_{4}([\begin{array}{cc} 1 \\ 0 \end{array}]=2\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}=\begin{bmatrix} a \\ b \end{bmatrix}=\begin{bmatrix} a \\ 0 \end{bmatrix}$ DNot linear!

Definition. The map id: $\mathbb{R}^n \to \mathbb{R}^n$ (or Id, or Id_n, or id_n) is called 081.9 the *identity* map on \mathbb{R}^n .

Example. Let *L* be given by
$$
L\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{bmatrix} x_1 - 2x_3 \\ x_1 + 2x_2 + 3x_3 \\ x_2 \\ 0 \end{bmatrix}
$$

\n**Example.** Let *L* be given by $L\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{bmatrix} x_1 - 2x_3 \\ x_2 \\ x_3 \end{bmatrix}$
\n**Option 1** Use the definition.
\n $\frac{9 \text{pftion 2: Show that } L \text{ is actually a matrix map! (knox + be linear).}$
\n $L\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{bmatrix} x_1 - 2x_3 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} + \begin{bmatrix} 2x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix}$

D= [¥. Êx] 42 ✗] = [×],[!] ix.[!] ⁺ " [Ë.] =L ! ? ?][¥;] } maux map ^④ sa [←] s] ((y) ⁼ ^A { ⁸ ? % 5×3 3-✗ ^I

Since $L = L_{A_1}$, we see that L is linear.

"Every Linear map is a matrix map".

.

- $\mathcal{F}\left\{\mathcal{F}^{\mathsf{m}}\right\} \to \mathbb{R}^{\mathsf{m}}$ p. 176 be ^a linear map . Let $S_n = \{ \stackrel{\cdot}{e}_1, ..., \stackrel{\cdot}{e}_n \} \subseteq \mathbb{R}^n$ (standard boois), for each n. Let $[L]_{s_{m}}F_{s_{n}} = [L(\xi_{1})...L(\xi_{n})] \in M_{m,n}(\mathbb{R}).$ Then f_{0r} all $x \in \mathbb{R}^n$, $L(x) = L_{3m}C_{5m}$ is.
- **Definition.** The matrix $[L]_{S\leftarrow S}$ is called the *standard matrix* for *L* (or, the *matrix of L from S to S*). $P.S.$ (Sometime, we'll just write (n) (m) [^L] . . .)

Example. Let $\vec{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$. Define $L : \mathbb{R}^2 \to \mathbb{R}^2$ by $L(\vec{x}) = \text{proj}_{\vec{v}}(\vec{x})$. Show that L is linear and find $[L]_{S\leftarrow S}$.

Solution. First, Let $\vec{x}_1 \vec{y} \in \mathbb{R}^2$, s,t E.R. Then we have: $proj_{\gamma} \circ (2\xi + \frac{1}{2}\xi) = \frac{(2\xi + \frac{1}{2}) \cdot \xi}{\sqrt{1-\xi}} \Rightarrow \frac{(2\xi + \xi) \cdot \xi + \xi}{\sqrt{1-\xi}} = \frac{2}{\sqrt{1-\xi}} \cdot \frac{(\xi + \xi) \cdot \xi}{\sqrt{1-\xi}} =$ $=$ sproj \vec{v} (x) + + proj \vec{v} (y). To compute [L], we need to compute L(é) and L(é2): $proj \circ \boxed{\circ} = \boxed{\frac{1}{12 \cdot 12}} = \boxed{\frac{1}{12 \cdot 12}} = \frac{1}{2} \boxed{1} = \frac{1}{2} \boxed{1}$ So $[L] = [L(\xi_1)] [L(\xi_2)] = \begin{bmatrix} V_2 & V_2 \\ V_2 & V_2 \end{bmatrix}$ $\frac{1}{2}$ $\frac{1}{2}$

When we motivated matrix multiplication, we said that because matrix-vector multiplication was like a function, then there should be some sort of composition aspect for matrices. We have the same thing for linear maps! $\mathbb{R}^n \longrightarrow \mathbb{R}^m \longrightarrow \mathbb{R}^p$ be linear maps

Definition. Let $L : \mathbb{R}^n \to \mathbb{R}^m$ and $M : \mathbb{R}^m \to \mathbb{R}^p$. The com- $P.139$ *position* $M \circ L$ of linear maps is the map from \mathbb{R}^n to \mathbb{R}^p defined by $M \cdot L(\vec{x}) = M(L(\vec{x}))$ for all $\vec{x} \in \mathbb{R}^n$. **NGirc**

in Latex.

Note. Because L and M are linear, MoL is also linear.

Example. Let $L : \mathbb{R}^3 \to \mathbb{R}$ and $M : \mathbb{R} \to \mathbb{R}^2$ be defined by

$$
L(\vec{x}) = x_1 + x_2 - 3x_3, \qquad M(y) = y \begin{bmatrix} 2 \\ 1 \end{bmatrix}. \qquad \text{Since } \vec{y}
$$
\nFind $M \circ L$ and compute $[M \circ L]$. Let $\vec{x} \in \mathbb{R}^3$, $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Then:
\n
$$
M \cdot L(\vec{x}) = M(L(\vec{x})) = M(x_1 + x_2 - 3x_3) = (x_1 + x_2 - 3x_3) \begin{bmatrix} a \\ 1 \end{bmatrix}.
$$
\nTo find $[m \cdot L]$:
\n
$$
M \cdot L(\vec{x}) = (x_1 + x_2 - 3x_3) \begin{bmatrix} 2 \\ 1 \end{bmatrix} = X_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = X_2 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + X_3 \begin{bmatrix} -b \\ -3 \end{bmatrix} = \begin{bmatrix} 3 & a - b \\ 1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \qquad z > \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.
$$
\n
$$
M \cdot L(\vec{x}) = [x_1 + x_2 - 3x_3] \begin{bmatrix} 2 \\ 1 \end{bmatrix} = X_1 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = X_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + X_3 \begin{bmatrix} -b \\ -3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} = M \cdot L(\vec{e}_a)
$$
\n
$$
M \cdot L(\vec{e}_a) = -3 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} -b \\ -3 \end{bmatrix} \longrightarrow [m \cdot L] = \begin{bmatrix} 2 & a - b \\ 1 & -3 \end{bmatrix}.
$$

$$
\text{P.18D} \qquad \text{Theorem (3.2.5). Let } L: \mathbb{R}^{n} \to \mathbb{R}^{m}, \, M: \mathbb{R}^{m} \to \mathbb{R}^{p} \text{ be linear maps.}
$$
\n
$$
\text{Then } L \text{ and } J_{sp} \in S_{n} \cong \text{[} \text{M} \text{]}_{sp} \in S_{n} \text{[} \text{L} \text{]}_{sm} \in S_{n} \text{.}
$$

Proof. Use defn's of matrix multiplication and standard matrix!
Compute
$$
M \cdot L(\check{e}_i) = M(L(\check{e}_i)) = M(LL) = \n\begin{bmatrix} M \end{bmatrix} \begin{bmatrix} L \end{bmatrix}
$$
,
 $= 2 \begin{bmatrix} M \cdot L \end{bmatrix} = \begin{bmatrix} L \cdot M \end{bmatrix} \begin{bmatrix} L \end{bmatrix}$, ..., $\begin{bmatrix} M \end{bmatrix} \begin{bmatrix} L \end{bmatrix} = \begin{bmatrix} M \end{bmatrix} \begin{bmatrix} L \end{bmatrix}$, by definition

<u>N</u>