
May 31 (Lecture 7)

Overview: We’ll briefly talk about bases and how the rank of a

matrix relates to spanning sets and linear independence. Then, it’s

on to matrices and “matrix algebra”!

Learning Goals:

Define and check for subspaces and bases for subspaces in Rn
.

Correctly perform basic computations with matrices.

As you’re getting settled:

Homework 3 due Tuesday, 11:30 pm Pacific.

Please reach out and ask for help instead of violating academic

integrity.

• HUJ 03 - flints pooted ont faim !



Operations on Matrices

Definition. The set of all m ⇥ n matrices (with real entries) is

denoted Mm,n(R) (or Mm⇥n(R)). The entries of a matrix A are

denoted Aij. Two matrices A and B in Mm,n(R) are equal when

Definition. An m⇥ n matrix A is square when

A square matrix A is upper or lower triangular when

A square matrix A is diagonal when

Example.

Definition. The sum of two matrices A,B 2 Mm,n(R), denoted
A + B, is given by

The scalar multiplication of A 2 Mm,n(R) by a real number c,

denoted cA, is given by
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Example.

Theorem (3.1.1). For all A,B,C 2 Mm,n(R) and s, t 2 R, we
have:

1. A + B 2 Mm,n(R)
2. A + B = B + A

3. (A + B) + C = A + (B + C)

4. There is a matrix Om,n (the zero matrix) such that A +

Om,n = A

5. For each A there is �A 2 Mm,n(R) such that A + (�A) =

Om,n

6. tA 2 Mm,n(R)
7. s(tA) = (st)A

8. (s + t)A = sA + tA

9. t(A + B) = tA + tB

10. 1A = A

Note. These properties should look familiar! (Theorem 1.4.1) Ma-

trices have many of the same properties as vectors; sometimes we say

they have the same “structure”. We can also do linear combinations
of matrices, just like for vectors.
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Definition. Let A 2 Mm,n(R). The transpose of A is the n ⇥m

matrix A
T
, with entries given by

Example.

Theorem (3.1.2). For A,B 2 Mm,n(R) and s 2 R, we have:

Proof.

Note.
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.
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Matrix Multiplication

Motivation. Recall that given an SLE with coe�cient matrix A

and vector of constants ~b, we can write the system of equations as

an equality of vectors:

Definition. Let A be an m ⇥ n matrix with columns A1, . . . , An,

and let ~v 2 Cn
be a vector of size n. Then thematrix-vector product

of A with ~v, denoted A~v, is defined to be

Example. Let A =

2

4
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3 4
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3

5, B = A
T
, ~v =


�1

1

�
, and ~w =

2

4
2

0

1

3

5.

Compute each of A~v, A~w, B~v, and B ~w, or explain why the product

doesn’t make sense.

Solution.
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Example continued.

Note.

Example.

Note. What happens if we try to compute A(s~v + t~w)?

Note. What is A~ei?
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Motivation for Matrix Multiplication. Is there a way to

compute “AB”? What should it be?

Definition. Let A be an m⇥ n matrix. Let B = [B1 · · ·Bp] be an

n⇥ p matrix. Then the matrix product of A with B, denoted AB,

is

Note. To compute AB, we can use either matrix-vector product

computation!

Example.
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Example. Let A =


1 2 3

0 �1 1

�
and B =

2

4
1 0 1

0 1 0

1 0 1

3

5. Compute AB

and BA, if possible.

Note.

Theorem (3.1.6). For A 2 Mm,n(R), we have ImA = A = AIn.

Proof.
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Theorem (3.1.4). For matrices A 2 Mm,n(R), B,C 2 Mn,p(R),
D 2 Mp,r(R), and s 2 R, we have:

A(B + C) =

(B + C)D =

s(AB) =

A(BD) =

(AB)
T
=

Proof.

Theorem (3.1.5).

Proof.
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