May 31 (Lecture 7)

Overview: We'll briefly talk about bases and how the rank of a matrix relates to spanning sets and linear independence. Then, it's on to matrices and "matrix algebra"!

Learning Goals:

- Define and check for subspaces and bases for subspaces in \mathbb{R}^n .
- Correctly perform basic computations with matrices.

As you're getting settled:

- Homework 3 due Tuesday, 11:30 pm Pacific.
- Please reach out and ask for help instead of violating academic integrity.
- · HU3 Q3 Hints pooted on t form!

Chapter 3

ρ 147 Operations on Matrices

Definition. The set of all $m \times n$ matrices (with real entries) is denoted $M_{m,n}(\mathbb{R})$ (or $M_{m \times n}(\mathbb{R})$). The entries of a matrix A are denoted A_{ij} . Two matrices A and B in $M_{m,n}(\mathbb{R})$ are equal when (or $A_{i,j}$) $A_{i,j} = B_{i,j}$ for all $1 \leq i \leq m_{i} \leq j \leq n_{i}$.

p.148 **Definition.** An $m \times n$ matrix A is square when m = n. (and "rectangular" if $m \neq n$) (Joseph pieters "non-squares).

A square matrix A is upper or lower triangular when Aij=0 For all i'j (upper), or Aij=0 for all icj (lower).

p. 149Definition. The sum of two matrices $A, B \in M_{m,n}(\mathbb{R})$, denotedA + B, is given by $(\exists f + B)_{ij} = \exists ij + B_{ij}$

The scalar multiplication of $A \in M_{m,n}(\mathbb{R})$ by a real number c, denoted cA, is given by $(cA)_{ij} = cA_{ij}$,

Both operations are done <u>entrywise</u>. (Entry by Entry).

•
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & -5 & 2 \end{bmatrix} + \begin{bmatrix} 0 & -1 & 1 \\ -4 & 5 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 4 \\ -4 & 0 & 2 \end{bmatrix}$$
.
Example.
• $-3\begin{bmatrix} 1 & 2 & 4 \\ -4 & 0 & 2 \end{bmatrix}$.

#Same 60

Vector thorem

Theorem (3.1.1). For all $A, B, C \in M_{m,n}(\mathbb{R})$ and $s, t \in \mathbb{R}$, we have:

- A + B ∈ M_{m,n}(ℝ)
 A + B = B + A
 (A + B) + C = A + (B + C)
 There is a matrix O_{m,n} (the zero matrix) such that A + O_{m,n} = A
 For each A there is -A ∈ M_{m,n}(ℝ) such that A + (-A) =
- 5. For each A there is $-A \in M_{m,n}(\mathbb{R})$ such that $A + (-A) = O_{m,n}$
- 6. $tA \in M_{m,n}(\mathbb{R})$
- $7. \ s(tA) = (st)A$
- $8. \ (s+t)A = sA + tA$
- 9. t(A+B) = tA + tB
- 10. 1A = A

Note. These properties should look familiar! (Theorem 1.4.1) Matrices have many of the same properties as vectors; sometimes we say they have the same "structure". We can also do *linear combinations* of matrices, just like for vectors.

```
" column"
```

p. 153 **Definition.** Let $A \in M_{m,n}(\mathbb{R})$. The *transpose* of A is the $n \times m$ matrix A^T , with entries given by $(A^T)_{ij} = A_{ji}$, for $1 \leq i \leq n$, $i \leq j \leq m$.

Example.

p.153 Theorem (3.1.2). For $A, B \in M_{m,n}(\mathbb{R})$ and $s \in \mathbb{R}$, we have:

- $(A^T)^T = A$.
- $(A + B)^T = A^T + B^T$.
- $(SA)^{T} = SA^{T}$.

Proof. For \sqrt{s} note that both matrices are nxm. For $1 \le i \le n$, $1 \le j \le m$, we have: $((sA)^T)_{ij} = (sA)_{ij} = sA_{ii} = s(A^T)_{ij} = (sA^T)_{ij}$. This EQ holds for all entries, this $(sA)^T = sA^T$.

Note. • What is M_{1,1}(R)? "Essentially" just R! [c] "=" c. • What is M_{n,1}(R)? "Essentially" Rⁿ!

=> Many of the upcoming theorems have similarlies to theorems where seen before, or apply equally for vectors /scalars!

Matrix Multiplication

Motivation. Recall that given an SLE with coefficient matrix A and vector of constants \vec{b} , we can write the system of equations as an equality of vectors:

 $\begin{cases} a_{11} x_{1} + a_{12} x_{2} = b_{1} \\ a_{21} x_{1} + a_{12} x_{2} = b_{2} \\ \hline \underline{Idea}: Define \quad A\dot{x}'' \text{ so that } J \text{ becomes } A\dot{x} = \bar{b}. \end{cases}$

p.157 Definition. Let A be an $m \times n$ matrix with columns A_1, \ldots, A_n , and let $\vec{v} \in \mathcal{Q}^n$ be a vector of size n. Then the *matrix-vector product* of A with \vec{v} , denoted $A\vec{v}$, is defined to be $A\vec{v} = \begin{bmatrix} A_1, \ldots, A_n \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \coloneqq V_1 A_1 + \ldots + v_n A_n$ $\Box C$ of columns of A by entries of \vec{v} .

$$\mathbf{Example.} \text{ Let } A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}, B = A^T, \vec{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \text{ and } \vec{w} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}.$$

Compute each of $A\vec{v}$, $A\vec{w}$, $B\vec{v}$, and $B\vec{w}$, or explain why the product doesn't make sense.

0

Solution.
$$A_V^{\perp} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} = (-1) \begin{bmatrix} 3 \\ 5 \\ -1 \\ 5 \end{bmatrix} + (1) \begin{bmatrix} 2 \\ 4 \\ -1 \\ 6 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ -1 \\ -1 \end{bmatrix}$$

Reduces the second of the sec

Example continued.

$$b\ddot{w} = \begin{bmatrix} 3 & 5 \\ 2 & 4 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = 2\begin{bmatrix} 2 \\ 2 \end{bmatrix} + 0\begin{bmatrix} 3 \\ 4 \end{bmatrix} + (1)\begin{bmatrix} 5 \\ 6 \end{bmatrix}$$

3 cob 3entries
 $\begin{bmatrix} 2 \\ 4 \end{bmatrix} + \begin{bmatrix} 2 \\ 6 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix} + \begin{bmatrix} 2 \\ 6 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$

Note. In
$$B\vec{\omega}$$
, look at the result entry-by-entry:
 $(B\vec{\omega})_{1} = 7 = (1)(2) + (3)(0) + (5)(1) = \begin{bmatrix} 3\\ 3\\ 3\end{bmatrix} \cdot \begin{bmatrix} 2\\ 3\end{bmatrix} \cdot \begin{bmatrix} 2\\ 3\\ 3\end{bmatrix} \cdot \begin{bmatrix} 2\\ 3\end{bmatrix} - \begin{bmatrix} 2\\$

In general: If
$$A = \begin{bmatrix} R, \\ \vdots \\ R_m \end{bmatrix} \in M_{m \times n}(R)$$
 and $\vec{v} \in R^n$, then $A\vec{v} = \begin{bmatrix} R, \vec{v} \\ \vdots \\ R_m \vec{v} \cdot \vec{v} \end{bmatrix}$.

Example.

$$\begin{bmatrix} 1 & 0 & 0 \\ a & 1 & 1 \\ -1 & 3 & 3 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 + 0 + 0 \\ a \cdot 0 + 1 \cdot 1 + 1 \cdot 1 \\ -1 \cdot 0 + 3 \cdot 1 + 3 - 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \longrightarrow Av = \tilde{0}$$

$$Av = \tilde{0}$$

Note. What happens if we try to compute $A(\underline{s}\vec{v} + \underline{t}\vec{w})$? $(A(\underline{s}\vec{v} + \underline{t}\vec{\omega})) := R_{i}^{T} \cdot (\underline{s}\vec{v} + \underline{t}\vec{\omega}) = \underline{s}(R_{i}^{T} \cdot \underline{v}) + \underline{t}(R_{i}^{T} \cdot \underline{v}) \xrightarrow{M \times N} \underbrace{e}_{R_{i}^{N}} \underbrace$

⇒A(5¢+は)= SAV++Aむ

Note. What is $A\vec{e}_i$? $A = \begin{bmatrix} A_1 & \dots & A_n \end{bmatrix}, \vec{e}_i = \begin{bmatrix} a_i & \dots & a_n \end{bmatrix}$

 $A\vec{e}_{i} = oA_{1} + ... + oA_{i-1} + A_{i} + OA_{i+1} + ... + oA_{n} = A_{i}$ 36

Motivation for Matrix Multiplication. Is there a way to
compute "AB"? What should it be?
• "Av" looks a lot like a function: Input:
$$v \in \mathbb{R}^n$$

($A \in m_{n,n}(\mathbb{R})$)
• function can be composed: "f.g = apply gitten apply C"
• "ABv" should be the same regardless of doing Bv, the $A(Bv)$, or (AB)v?.
(associative property).
So : $A(Bv) = A(v_1B_1 + \dots + v_nB_n) = v_1AB_1 + \dots + v_nAB_n$ o
"should"
= $[AB_1 \dots AB_n] [V_n]$ •
 $good ideal$

Definition. Let A be an $m \times n$ matrix. Let $B = [B_1 \cdots B_p]$ be an $n \times p$ matrix. Then the *matrix product* of A with B, denoted AB, is the mxp matrix $AB^{=} [AB_{+} \cdots AB_{p}]$.

Note. To compute AB, we can use either matrix-vector product computation!

Example.

$$\begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} (1) \begin{bmatrix} 1 \\ 3 \end{bmatrix} + (1) \begin{bmatrix} 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 3 & 0 \end{bmatrix}$$

$$\begin{bmatrix} (1)(1) + (2)(1) \\ (3)(0) + (0)(1) \end{bmatrix} = \begin{bmatrix} 3 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 3 & 0 \\ 3 & 0 \end{bmatrix}$$

$$\begin{bmatrix} (1)(1) + (2)(1) \\ (3)(0) + (0)(1) \end{bmatrix} = \begin{bmatrix} 3 & 0 \end{bmatrix}$$

$$\underbrace{Note: \ [1 & 0][1] \ 15 \ Hc \ same}$$

$$as \ [2] \begin{bmatrix} 2 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

Example. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$. Compute AB
and BA , if possible.

$$AB = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
. Compute AB
$$AB = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1+3 & 2 & 1+3 \\ 4 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 1 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 2 & -1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 4 & 2 & 4 \\ 2 & -1 & 1 \end{bmatrix}$$

Note.
$$\overline{AB \neq BA}$$
. Thy might not even be defined, let abre the
same size. = diag (1,...,1).
p.165 Definition: The identity matrix of size h is $I_n = \begin{bmatrix} 1 & 0 \\ 0 & \cdots \\ 0 & \cdots \\ 0 & \cdots \\ (n \times n) \end{bmatrix}$

p.165 Theorem (3.1.6). For
$$A \in M_{m,n}(\mathbb{R})$$
, we have $I_m A = A = AI_n$.
Proof. $\circ (I_m A)_{ij} = e_i \circ A_j = A_{ij} \text{ for all } i_{ij} \circ o I_m A = A^{!}$.
 $\circ AI_n = [Ae_i \cdots Ae_n] = [A_1 \cdots A_n] + A^{!}$.
We used both multiplication
expressions! Very lool.
 38

$$\begin{array}{l} \label{eq:product} \end{tabular} \begin{split} & \end{tabular} P^{1,[b]} \end{tabular} \end{tabular} \end{tabular} \end{tabular} Here & \end{tabular} \left\{ \begin{array}{l} \end{tabular} P^{1,[b]} \end{tabular} \end{ta$$

Proof. For each i=1,...,n, we have $A_i = A\dot{e}_i = B\dot{e}_i = B_i$. Each of the columns are the same, and so A=B.

$$\left(\stackrel{\circ}{e}_{i} \stackrel{\circ}{=} \left[\begin{array}{c} 0\\ 0\\ 0\\ 0 \end{array} \right] \leftarrow i^{\text{th}} entry \right).$$