May 27 (Lecture 6)

Overview: After working a bit with homogeneous systems, we'll use SLEs to discuss the concepts of spanning sets and linear independence.

Learning Goals:

- Define and check for "spanning" and "linearly independent" sets in the context of \mathbb{R}^n .
- Define and check for subspaces and bases for subspaces in R*ⁿ*.

As you're getting settled:

- Homework 3 is out! Due Tuesday, 11:30 pm Pacific.
- Reflection available after class, due Friday night, 11:30 pm!
- \circ Reflection available after class, due Friday night, 11:30 p
By the way, I do read to Reflections (unonyomonsh_y,mosty),

 15.9 **Definition.** A non-empty subset S of \mathbb{R}^n is called a *subspace* (of \mathbb{R}^n) when for all \overrightarrow{v}_1 is ϵ s and S_1 +, ϵ \mathbb{R}_1 ve have $s\overrightarrow{v}_1$ + \overrightarrow{r}_2 ϵ s. je Sis closed under linear combinations.

Note. Would also
$$
\frac{6}{3}
$$
 is closed under Vector addition. $(3e1 = 1)$. $\frac{41}{4}$
Note. Would also $\frac{5ay}{6}$. $\frac{6}{3}$ is closed under Scalar multiplication ($3 = 0$). $\frac{41}{4}$

$$
p.53 \text{ Theorem (1.4.2). If } S \text{ is a } \frac{5000e^{\frac{1}{2}}}{\frac{1}{2}(5.4 \times 10^{-3} \text{ m})} \text{ s. } \frac{5000e^{\frac{1}{2}}}{\frac{1}{2}(5.4 \times 10^{-3} \text{ m})} \text{ s. } \frac{1}{2} \text{ s. } \frac{
$$

Note: plural of basis: "base"

Definition. Let W be a subspace of \mathbb{R}^n . A subset B of W is a $p.55$ basis for W when B is a linearly independent spanning set for W.
Boors help us describe subspaces voing LCs wout unnecessary repition.

Example.
\nFor
$$
i=1, m
$$
 $l_1 + l_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ with only. The $b = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$, $l_2 + l_3 = 0$
\n
$$
I_n \quad R^3: \int_{k_1}^{k_2} k_1 \quad b_1 \text{ back the B in a box, by } R^n \quad \text{to what has a b. } R^n
$$
\n
$$
I_n \quad R^3: \int_{k_1}^{k_2} k_1 \quad b_1 \text{ back the B in a box, by } R^n \quad \text{to what has a b. } R^n
$$
\n
$$
I_n \quad R^4: \quad L_1 \quad \text{and} \quad (k \text{ is possible}) \quad \text{to what has a b. } R^n
$$
\n
$$
= x_1 \hat{c}_1 + \dots + x_n \hat{c}_n \quad \text{to each } R^n
$$
\n
$$
= x_1 \hat{c}_1 + \dots + x_n \hat{c}_n \quad \text{to each } R^n
$$
\n
$$
= x_1 \hat{c}_1 + \dots + x_n \hat{c}_n \quad \text{to each } R^n
$$
\n
$$
I_n \quad R^2: \quad \text{to each } R^n
$$
\n
$$
I_n \quad R^3: \quad R^4: \quad \text{to each } R^n
$$
\n
$$
I_n \quad R^4: \quad \text{to each } R^n
$$
\n
$$
I_n \quad R^5: \quad \text{to each } R^n
$$
\n
$$
I_n \quad R^6: \quad \text{to each } R^n
$$
\n
$$
I_n \quad R^8: \quad L_1 \quad \text{to each } R^8: \quad L_1 \quad \text{to each } R^9
$$
\n
$$
I_n \quad R^8: \quad L_1 \quad \text{to each } R^9
$$
\n
$$
I_n \quad R^9: \quad L_1 \quad \text{to each } R^9
$$
\n
$$
I_n \quad R^9: \quad L_1 \quad \text{to each } R^9
$$
\n
$$
I_n \quad R^9: \quad L_1 \quad \text{to each } R^9
$$
\n
$$
I_n \quad R^9: \quad L_1 \quad \
$$

Theorem. Let $S = {\vec{v_1}, \ldots, \vec{v_k}}$ be a set of *k vectors in* \mathbb{R}^n *. Let* $\overline{P(X|X)} \longrightarrow A$ *be the coefficient matrix of the homogeneous system* $c_1\vec{v}_1 + \cdots + c_k\vec{v}_k = \vec{0}$ *(its columns are the vectors* $\vec{v}_1, \ldots, \vec{v}_k$). $(2.3.1)$ S spans \mathbb{R}^n if and only if rank (A) = n. (2.3.2) If S spans \mathbb{R}^n , then Kzn. (spanning sets have to be at least a certain size). *(2.3.3)* S is LI if and only if rank(A) = K. *(2.3.4)* If S is LI, thin $k \in n$. (LI sets can only be so big). *If* $k = n$ *, then we also have: (2.3.5)* S is a basis for R^h if and only if rank(A)= n. *(2.3.6)* S spans \mathbb{R}^n if and only if S is LI. /

Example.

 \circ S₁ = $\frac{3}{5}$ $\sqrt[3]{2}$, $\sqrt[3]{3}$ $\leq R^3$, $\frac{8}{3}$ $\frac{4}{5}$ $\frac{1}{100}$ \leq $\frac{1}{100}$ \leq $\frac{1}{100}$ \leq $\frac{1}{100}$ \leq $\frac{1}{100}$ \leq $\frac{1}{100}$ \circ S₂ = $\{$ $\frac{3}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}\}$ $\subseteq R^4$ By thm. 2.3.2, S_2 cannot span IR^4 . $s_{3} = \{ \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\$ so S_s spans \mathbb{R}^3 if and only if Ss is LI. $1002/5$ ° A= $\begin{bmatrix} 1-2 & 0 \\ 0 & 5 \\ 0 & -4 \end{bmatrix} \xrightarrow{\text{row}} \begin{bmatrix} 1 & 0 & 2/5 \\ 0 & 1 & 7 \end{bmatrix}$. rank (A)= 2, so by thm. 2.3.5, S3 is not a brown
 $\begin{bmatrix} 1-2 & 0 \\ 0 & 5 \end{bmatrix} \xrightarrow{\text{row}} \begin{bmatrix} 1 & 0 & 2/5 \\ 0 & 1 & 7 \end{bmatrix}$. rank (A)= 2, so by thm. 2.3.5, o U Vr J. rank and a (or J)
o U Vr J. rank and a (or J)

Note. By row-reducing a matrix, we can: 30 ^o solve SLE> ^o check for membership in a Span . o Check LI: . Check spanning set . Check for basis. ~ 30 \sim

An application. The textbook has a variety of discipline-specific examples in section 2.4, none of which I would do justice in class. So, here's a mathematics application.

Suppose (x, y) data is known to fit a quadratic equation of the form $y = f(x)$, with known data points $(-1, 1)$, $(1, 1)$, $(2, -2)$. Find the explicit equation.

We know
$$
y \cdot f(x) = a + bx + cx^2
$$
, for some $a, b, c \in \mathbb{R}$.
\nSubstitute data points into 1's.
\n $1 = a - b + c$ $\frac{aF}{a, b, c}$ \rightarrow $\begin{bmatrix} 1 & -1 & 1 \ 1 & 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & -a \ a & b \end{bmatrix}$ $\begin{bmatrix} 1 & 0 & 0 \ 0 & 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 2 \ -1 \ -2 \end{bmatrix}$
\n $1 = a + b + c$ $\frac{aF}{a, b, c}$ \rightarrow $\begin{bmatrix} 1 & 1 \ 1 & 1 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \ 1 & -a \end{bmatrix}$ $\begin{bmatrix} 100 \ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 2 \ 0 \ 1 \end{bmatrix}$.
\nOur Solution is $\begin{bmatrix} a \ b \ c \end{bmatrix} = \begin{bmatrix} 2 \ 0 \ -1 \end{bmatrix}$. $\begin{bmatrix} 1100, 14c & 0 \ 1 \end{bmatrix}$ $\begin{bmatrix} 4 & 0 \ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 \ 1 & 1 \end{bmatrix}$.
\n $\begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 \ 0 \ -1 \end{bmatrix} = \begin{bmatrix} 2 \ 0 \ -1 \end{bmatrix}$. $\begin{bmatrix} 1100, 14c & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 \ 0 \ -1 \end{bmatrix}$.
\n $\begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 \ 0 \ -1 \end{bmatrix} = \begin{bmatrix} 2 \ 0 \ -1 \end{bmatrix} = \begin{bmatrix} 1100, 14c & 0 \ 0 & 1 \end{bmatrix}$.
\n $\begin{bmatrix} 1 & 0 \ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 \ 0 \ -1 \end$

. Note how a quadratic isn't "linear" on its own, but by looking at the <u>coefficients</u>, we found ^a linear algebra problem!