May 20 (Lecture 5)

Overview: We will define the reduced row echelon form (RREF) and the rank of a matrix and see how those two concepts can help us solve SLEs! We'll then use SLEs to discuss the concepts of spanning sets and linear independence.

Learning Goals:

- Precisely define "RREF" and determine whether or not a matrix is in RREF.
- Precisely define and compute the rank of a matrix.
- Define "span" and "linear independence" in the context of \mathbb{R}^n .

As you're getting settled:

- No class on May 24! (statutory holiday in Canada) Office hours to be held on Tuesday, $1:00-2:00$ pm.
- Homework 2 is out! Due next Tuesday, 11:30 pm Pacific.
- Reflection available after class, due Friday night, 11:30 pm!
- Homework ¹ Solutions Poste^d to Bright space
- trop right arrow command tut stacks .

Example continued.

These last few examples foreshadow this theorem: $\overline{1}$ System - Rank Thm . "

Theorem (2.1.3, 2.2.2). Let $[A, \vec{b}]$ represent a system of *m* linear *equations in n variables.* ^M ⁼ # Columns of A .

- 1. The system is consistent if and only if rank (A) = rank [A | b]. (or : is inconsistent if and ony if the RREF of [AIb] has a row of [0...011]!).
- 2. If the system is consistent, thin to number of free variables (paramters) $\begin{pmatrix} 1 & 0 & 0 \\ 0 & -r\cos(\theta) \end{pmatrix}$ (unique solution \Leftrightarrow $n = rank(A)$).
- 3. We have rank (A) = n if and only if the system represented by [Alb] is consistent for every b $\epsilon \nR^n$.

Example. Suppose that the augmented matrix $[A|\vec{b}]$ for a system of linear equations has RREF equal to ex .

$$
\begin{bmatrix}\n1 & 0 & -1 & 0 & 2 & 1 \\
0 & 1 & 0 & -3 & -1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0\n\end{bmatrix}\n\xrightarrow{r_{\alpha}N} k[A|_{\alpha}^{1} = 3\n\begin{bmatrix}\n(x_{1}, x_{2}, x_{1}, x_{4}, x_{5}) & (x_{1}, x_{2}, x_{6}, x_{7}) & (x_{1}, x_{2}, x_{6}) & (x_{1}, x_{6}, x_{7}) \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0\n\end{bmatrix}
$$

Is the system consistent? If so, how many parameters/free variables are there in the solution?

Solution. rank(A) = rank[A|
$$
\overline{b}
$$
], so ye *Consider* \overline{b}
\n \overline{b} = 5 - 3 = 2 $\frac{1}{2}$ $\frac{5}{1}$

P. 108

 $x_1 + x_2 + 3x_1 = 0$

Definition. A linear equation is *homogeneous* when the constant lean is 0. $60/q$ A system of linear equations is *homogeneous* when ϵ ach ϵ α κ λ system is $[A \mid \delta]$ homogeneous. ($\beta = \dot{\delta}$).

Example. Consider the SLEs represented by augmented matrices

$$
M_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \ 0 & 1 & 1 & 0 & -3 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 & 0 \ \end{bmatrix}, \qquad M_{2} = \begin{bmatrix} 1 & 0 & -1 & 0 & 2 & 1 \ 0 & 1 & 1 & 0 & -3 & -1 \ 0 & 0 & 0 & 1 & 0 & 3 \ 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 0 \ \end{bmatrix}.
$$

\nIs there a relationship between the solution sets for these systems?
\n
$$
M_{1} \times P_{1} \times P_{2} \times P_{3} \times P_{4} \times P_{5} \times P_{6} \times P_{7} \times P_{8} \times P_{9} \times P_{1} \
$$

Definition. For a homogeneous SLE, the zero vector is the *trivial* $1/2.9$ *solution* to the system.

Spanning and Linear Independence in \mathbb{R}^n

Definition. Let $S = {\vec{v_1}, \dots, \vec{v_k}}$ be a set of vectors in \mathbb{R}^n . The $b.5a$ span of S, denoted span S or $\text{span}(S)$, is the set of all linear combinations of vectors in S: $\text{span}\mathfrak{S}^5$ $\{c_i\vec{v}_1 + ... + c_k\vec{v}_k : c_1 ... c_k \in \mathbb{R}\}$

Example. Is
$$
\vec{v} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}
$$
 in the span of the set $S = \begin{Bmatrix} 1 \\ 2 \\ 0 \end{Bmatrix}$, $\begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}$?
\n**Solution.** Check if $\begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} = C_1 \begin{bmatrix} 2 \\ 0 \end{bmatrix} + C_2 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
\n**Rephwood**: $C_1 \cdot C_2 = 1$
\n $2C_1 + C_2 = 0$ **Eachly solvable**, C_1 **de could be a matrix**,
\n $C_2 = -1$
\n $\begin{bmatrix} 1 & -1 \\ 2 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\$

Picture

- **Definition.** Let $S = {\vec{v_1}, \dots, \vec{v_k}}$ be a set of vectors in \mathbb{R}^n . The $52,9$ set S is linearly dependent when there exists real numbers, $c_1, ..., c_k$ not all zero such that $c_1v_1...+c_kv_k=0$.
	- S is linearly independent when S is not linearly dependent! " the frivial solution"

Example continued. From $1\left[\frac{1}{6}\right] + \sqrt[3]{\frac{1}{1}} = \left[\frac{1}{8}\right]$ $\rightarrow 1$ $\begin{bmatrix} 2 \\ 8 \end{bmatrix}$ + $3\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ + $-1\begin{bmatrix} 1 \\ 4 \end{bmatrix}$ = 0, so s is lineary dependent. finar dependence $relation$ on 5.1

Example. Let
$$
S = \begin{cases} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 5 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix}, \begin{bmatrix} -1 \\ -3 \\ 3 \end{bmatrix} \end{cases}
$$
. Is *S* linearly
independent? If not, find a linearly independent subset *S'* of *S* such
that span $S' = \text{span } S$.

 $\frac{S\text{Var}\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_2 \begin{bmatrix} 1 \\ 1 \\ 5 \end{bmatrix} + C_3 \begin{bmatrix} 3 \\ 1 \\ 4 \end{bmatrix} + C_4 \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$

 $\frac{S\text{Var}\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_1 C_2 C_3 C_4 \end{bmatrix} C_4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_5 \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix} + C_6 \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$

 $\frac{S\text{Var}\left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + C_1 C_2 C_3 C_4 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + C_1 \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} + C_2 \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 2 \end{bmatrix}$

 $\frac{1}{2}$

There are non-trivial solutions are zero.

\nFor example,
$$
\cos 2x + 1 = 2
$$
, $C_1 = -3$, $0 + 3 = 1$, $C_2 = 1$, $C_3 = 1$.

\nThus, $\frac{1}{3} \int_{0}^{1} \left(\frac{1}{3} - \frac{3}{3} \right) \left(\frac{1}{3} \right) + 1 \left[\frac{3}{4} \right] + 1 \left[\frac{3}{3} \right] = \left[\frac{5}{6} \right] = 0$.

\nThus, $\frac{1}{3} \int_{0}^{1} \left(\frac{1}{3} - \frac{3}{3} \right) \left(\frac{1}{3} \right) + 1 \left[\frac{3}{4} \right] + 1 \left[\frac{3}{3} \right] = \left[\frac{5}{6} \right] = 0$.

\nSo, $\cos 2x - 1$, $C_4 = 0$ and $\left[\frac{1}{4} \right] = 0$, $C_5 = 1$.

\nSo, $\sin x = \frac{5}{3} \left[\frac{1}{3} \right], \left[$