May 20 (Lecture 5)

Overview: We will define the reduced row echelon form (RREF) and the rank of a matrix and see how those two concepts can help us solve SLEs! We'll then use SLEs to discuss the concepts of spanning sets and linear independence.

Learning Goals:

- Precisely define "RREF" and determine whether or not a matrix is in RREF.
- Precisely define and compute the rank of a matrix.
- Define "span" and "linear independence" in the context of \mathbb{R}^n .

As you're getting settled:

- No class on May 24! (statutory holiday in Canada) Office hours to be held on Tuesday, 1:00-2:00 pm.
- Homework 2 is out! Due next Tuesday, 11:30 pm Pacific.
- Reflection available after class, due Friday night, 11:30 pm!
- · Homework 1 Solutions Posted to Bright space
- · rop right arrow command tat stucks.

Example continued.

These last few examples foreshadow this theorem: "System-Rank Thm."

 $p_{.} \mid 08$ Theorem (2.1.3, 2.2.2). Let $[A, \vec{b}]$ represent a system of m linear equations in n variables. $n = \# c_{0} \mid u_{mns} \text{ of } A$.

1. The system is consistent if and only if rank(A) = rank [A|b]. (Dr: is inconsistent if and only if the RREF of [A|b] has a row of [0...011]!).

- 2. If the system is consistent, thin the number of free variables (parameters) is n-rank (A). (unique solution (=> n=rank(A)).
- 3. We have rank (A)=n if and only if he system represented by [Alb] in consistent for every b & R".

Example. Suppose that the augmented matrix $[A|\vec{b}]$ for a system of linear equations has RREF equal to

Is the system consistent? If so, how many parameters/free variables are there in the solution?

 $X_1 + X_2 + 3X_3 = 0$

p.109Definition. A linear equation is homogeneous when the content term is 0.A system of linear equations is homogeneous when each EQ in the system is[A\ddod]homogeneous. (b=d).

Example. Consider the SLEs represented by augmented matrices

 p_{1} **Definition.** For a homogeneous SLE, the zero vector is the <u>trivial</u> <u>solution</u> to the system.

Spanning and Linear Independence in \mathbb{R}^n

Definition. Let $S = \{\vec{v}_1, \dots, \vec{v}_k\}$ be a set of vectors in \mathbb{R}^n . The span of S, denoted span S or span(S), is the set of all linear combinations of vectors in S: span $S \in \{c_1, v_1, \dots, c_k\}$ is $C_1, \dots, C_k \in \mathbb{R}^2$.

If
$$W = \operatorname{span} S$$
, then $S \mapsto a$ spannily set for ω , or S spans ω .

Example. Is
$$\vec{v} = \begin{bmatrix} 1\\ 0\\ -1 \end{bmatrix}$$
 in the span of the set $S = \left\{ \begin{bmatrix} 1\\ 2\\ 0 \end{bmatrix}, \begin{bmatrix} -1\\ 1\\ 1 \end{bmatrix} \right\}$?
Solution. Check if $\begin{bmatrix} 0\\ -1 \end{bmatrix}^{\pm} C_{1} \begin{bmatrix} 2\\ 0 \end{bmatrix}^{\pm} C_{2} \begin{bmatrix} 1\\ -1 \end{bmatrix}$
Rephricoed: $C_{1} - C_{2} = 1$
 $\Im_{c_{1}} + C_{2} = 0$ o Easily solvable jc_{1} we could use a matrix!
 $C_{2} = -1$
 $\begin{bmatrix} 1 & -1\\ 0 & 1 \end{bmatrix} \stackrel{k_{2}}{\longrightarrow} \stackrel{model{sol}}{\boxtimes} \stackrel{model{sol}}{\longrightarrow} \stackrel{model{sol}}{\boxtimes} \stackrel{model$

<u>Picture</u>

Example. What is the span of
$$S = \left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} -1\\1\\1 \end{bmatrix}, \begin{bmatrix} -1\\4\\2 \end{bmatrix} \right\}$$
?
Span S: $\left\{ c, \begin{bmatrix} a\\2 \end{bmatrix} + c_0 \begin{bmatrix} -1\\1 \end{bmatrix} + c_3 \begin{bmatrix} -4\\2 \end{bmatrix} : c_1, c_2, c_3 \in \mathbb{R} \right\}$
From to bod ago us know the span contains a plane. Does it contain more vectors, thunks to $\begin{bmatrix} -1\\4\\2 \end{bmatrix} : c_1 \begin{bmatrix} a\\2\\2 \end{bmatrix} + c_0 \begin{bmatrix} -1\\1\\2 \end{bmatrix} \rightarrow \begin{bmatrix} a\\2\\1\\2 \end{bmatrix} \begin{bmatrix} -1\\4\\2\\2 \end{bmatrix} \stackrel{(o)}{=} \left[\frac{1}{2} \\ 0 \end{bmatrix} \stackrel{(o)}{=} \left[\frac{1}{2$

p.53 **Definition.** Let $S = {\vec{v}_1, ..., \vec{v}_k}$ be a set of vectors in \mathbb{R}^n . The set S is *linearly dependent* when there exists real numbers, $c_1, ..., c_k$ <u>Not all Zero</u> such that $c_1 \vec{v} \cdot ... + C_k \vec{v}_k = \vec{0}$.

S is linearly independent when S is not linearly dependent! or: the only solution to $c_1 v_1 + \ldots + c_k v_k = 0$ is $c_1 = \ldots = c_k = 0$. "the trivial solution".

Example continued. From 1[3] + 2[1] = [4] $\rightarrow 1[3] + 2[1] + -1[4] = 0, so s is linearly dependent.$ "linear dependence relation on s."

There are non-trivial solutions the the vector CO;
For example, choose
$$c_3=1=c_4$$
. $c_1=-3/3+3=1/2$, $c_2=1/2-1=3/3$
Thus, $1/3 \begin{bmatrix} 1\\2\\2\end{bmatrix} - 3/3 \begin{bmatrix} -1\\2\\3\end{bmatrix} + 1 \begin{bmatrix} 2\\4\\2\end{bmatrix} + 1 \begin{bmatrix} -3\\2\\3\end{bmatrix} = \begin{bmatrix} 2\\6\\3\end{bmatrix} = \begin{bmatrix} 2\\6\\3\end{bmatrix} = \begin{bmatrix} 2\\6\\3\end{bmatrix} = \begin{bmatrix} 2\\6\\3\end{bmatrix} = \begin{bmatrix} 2\\6\\2\end{bmatrix} = \begin{bmatrix} 2\\2\\2\end{bmatrix} = \begin{bmatrix} 2\\2\\3\end{bmatrix} = \begin{bmatrix}$

(