
May 17 (Lecture 4)

Overview: Today we will focus on systems of linear equations and

how to solve them, which will be an important tool throughout the

rest of this course!

Learning Goals:

Solve systems of linear equations.

Precisely define “RREF” and determine whether or not a ma-

trix is in RREF.

As you’re getting settled:

Homework 1 due tomorrow night, 11:30 pm!

Homework 2 to come out tomorrow morning, based on the

material from today/last Thursday.



Theorem (2.1.2). If two augmented matrices are row-equivalent,
then the associated systems of linear equations are equivalent.

Definition. Let A be a matrix. We say that A is in row echelon
form (or REF ) when:

1.

2.

We say that A is in reduced row echelon form (or RREF ) when it

is in REF and:

3.

4.

If B is a matrix in (R)REF and is row-equivalent to A, then we say

that B is an (R)REF for A.

Example. Determine whether or not the following matrices are in

REF or RREF:

2

4
1 0 3

0 1 2

0 0 0

3

5

2

4
0 2 1 4

1 0 �3 5

0 0 1 �1

3

5

2

4
2 0

0 1

0 1

3

5

Note. Sometimes leading entries are called pivots (as if you’re

“pivoting” the row operations around that entry).
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.
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Satisfied ⇒ in RREF

.



Example. Find a matrix in RREF that is row-equivalent to the

following matrix. 2

4
1 3 4

2 4 2

�1 �1 2

3

5

Solution.

Note.
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Perform now Operations to make tu rates hold .

| 3 y Rz -24 1 34 R]
+ Rz 134 -% R2 1 3 4

z
"

y a > 0-2-6 > 0-2-6 >
01 3

- il? , y Rzt R ,

O 2 6 00 O O O O

R , -3fr | 0 -5

0 1 3 } in RREF !
O O O -

" the RREF
"

(many way
> to get

to te RREF ) .
→ REF

As per Theorem 2.2.2 , p .
105

,
while a Matrix can have many

REF> ( REF is not unique) , it can Conty have one RREF (RREF is unique) !



Example. Here are some matrices in RREF that are row equiva-

lent to augmented matrices representing systems of linear equations.

What are the solution sets for those systems?

A =

2

64
1 0 1 0 4

0 1 2 0 �1

0 0 0 1 5

3

75 B =

"
0 1 2

0 0 0

#
C =

2

6664

1 0 0 1

0 1 0 2

0 0 1 3

0 0 0 1

3

7775

Solution.
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Write down th SIE for te matrix in RREF !

A :{ ¥: :: ' *[ ¥:] :[¥:] -1¥] -1×1%1¥✗y
= 5

×
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it can be any
-

King !
"
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this SLE is

" = °
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x]
=3

empty!
O = 1



Definition. Let A be a matrix. The rank of A, denoted rank(A),
is

Example continued. What are the ranks of the matrices A,B,C
from last page?

Example. What is the rank of this matrix from before?

2

4
1 3 4

2 4 2

�1 �1 2

3

5

Solution.

Example. Based on just the numerical answer to the last example,

is the following system consistent?

x1 + 3x2 = 4

2x1 + 4x2 = 2

�x1 � x2 = 2
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p -

lot

the number of lending one in th RREF of A.

rank (A) =3 | rank (B) = 1 / rank (c) = 4

from befere : 134
134

242
0ps 10-5

⇒ rank [% :] --2 .O l 3
- l - l 2

.

000

( In RREF )

augmente d Matrix for k SLE .
1 3 4

from th RREF : Yes! / 24 {]
- l - l

from just Krank f- a) :

unfortuanetb , no !

> Here is an augnnted matrix w/ tank 2
that yield> an inconsistant system :

[% :p : "


