May 17 (Lecture 4)

Overview: Today we will focus on systems of linear equations and
how to solve them, which will be an important tool throughout the
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rest of this course! .
Learning Goals:

e Solve systems of linear equations.

e Precisely define “RREF” and determine whether or not a ma-
trix is in RREF.

As you’re getting settled:

e Homework 1 due tomorrow night, 11:30 pm!

e Homework 2 to come out tomorrow morning, based on the
material from today/last Thursday.



?. 9%  Theorem (2.1.2). If two augmented matrices are row-equivalent,
then the associated systems of linear equations are equivalent.

ML Definition. Let A be a matrix. We say that A is in row echelon
form (or REF) when:
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We say that A is in reduced row echelon form (or RREF) when it
is in REF and:
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If B is a matrix in (R)REF and is row-equivalent to A, then we say
that B is an (R)REF for A.

Example. Determine whether or not the following matrices are in

REF or RREF:
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Note. Sometimes leading entries are called pivots (as if you're
“pivoting” the row operations around that entry).
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Example. Find a matrix in RREF that is row-equivalent to the

following matrix.
1
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Example. Here are some matrices in RREF that are row equiva-
lent to augmented matrices representing systems of linear equations.
What are the solution sets for those systems?
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p-\%  Definition. Let A be a matrix. The rank of A, denoted rank(A),
is e nNumoec of \zad\r\b ones a1t RREF of O

Example continued. What are the ranks of the matrices A, B, C
from last page?

e (B)=3 | kB 1 | raek(Q)s A

Example. What is the rank of this matrix from before?

1 3 4
2 4 2
-1 —1 2
Solution.
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Example. Based on just the numerical answer to the last example,

is the following system consistent? \ 3 WVW foe % JLE.

fom 4, BREV \3@0 T1+ 3xo =4 / [

E(QN\ \U\b\' \’lr (W (: a} s 2513'1 + 45(72 =9
¥ —T1 — Tg = 2

ell o=\
22



