
May 13 (Lecture 3)

Overview: The dot product allows us to talk about more geometry,

and in particular allows us to define projections. Then, we’ll start

talking about linear equations, which we’ve seen a little bit already!

Learning Goals:

Use the dot product to compute lengths of and angles between

vectors.

Correctly define and use projections of vectors onto other vec-

tors.

Define and solve systems of linear equations.

As you’re getting settled:

Homework 1 is out! It’s due next Tuesday (at 11:30 pm

sharp). (Practice submitting with Homework 0 and the Video

Walkthrough!)

Yesterday was Women in Mathematics Day!

(Maryam Mirzakhani’s birthday, for reference.)
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Systems of Linear Equations

Definition. A linear equation in the variables x1, . . . , xn is an

equation of the form

Example. Which of the following equations are linear in the vari-

ables x1, x2?

⇡x1 � ex2 = 42

x1 = x22 � 1

sin
2
(x1) + cos

2
(x2) = 1

x1 + x2 = 1, where x1 = sin
2
(t1) and x2 = cos

2
(t2).

0 = 0

~n · ~x = 1, where ~n =


n1

n2

�
and ~x =


x1
x2

�
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Note. A linear equation can represent...
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.



Definition. A system of linear equations in variables x1, . . . , xn
is a collection of m linear equations in those variables:

a11x1 + a12x2 + · · · + a1nxn = b1
a21x1 + a22x3 + · · · + a2nxn = b2

...

am1x1 + am2x2 + · · · + amnxn = bm

In the notation aij: i-th equation, j-th variable coe�cient.

A vector ~x =

2

4
s1
...

sn

3

5 is a solution of the system when all m equations

are satisfied when xi = si for each i. The set of all solutions to a

system is the solution set.

A system of linear equations is consistent when it has at least one

solution; otherwise, it is inconsistent.

Example.
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We can solve systems using three “equation” operations:

Example. Solve the following system of equations:

x1 � 2x2 = �3

�x2 � x3 = �5

x1 � 2x2 + x3 = 0

Visualize the solution set.
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Re-
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Multiply an EQ by a non-Zero scalar
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Replace EQJ by EQ] + C- 1)(EQ]) :
(EQI '

✗
< + × , = 5

✗, =3

"
Back - substitution
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Let's see : X
,
- 2×2 + Ox, =-3

✗ a
= 5- ✗

z
= 5-3=2

✗ z + 5

Xz$✓ ✗ ,
=-3 + 2×2 = -3+4

= 1

s. te sont" set " { [ § ) }
.

*Visualizing : o GeoGebran (3D)
° Grapher on macOS



Example. Find a vector inR4
orthogonal to both

2

6664

1

2

1

�3

3

7775
and

2

6664

1

3

0

�5

3

7775
.

Definition. If one can go from one system of linear equations to

another via the three equation operations, then the two systems are

equivalent.

Note. The process of solving systems of equations that we’re using is

called (Gaussian) elimination. If we get to a point halfway through
and start substituting values back in, then sometimes we call it back-
substitution.
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Do we really need to keep track of the variable names?

Definition. Given a system of m linear equations in n unknowns,

we can represent the system with a matrix :

Example. Write down the associated augmented matrix for this

system of equations:

x1 + x3 = 3

�4x1 + 3x2 � x3 = 6

2x1 � x2 + 3x3 = 7

Definition. The “equation” operations have analogous (elemen-
tary) row operations :

We say that two matrices A and B are row equivalent, denoted
A ⇠ B, when
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" coefficient matrix
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" Vector v1 - bA-
constants

solutions Augmente matrix :
1- 0 1- 3 § coefficient Matrix : Vector of constats :

l 01f-43 -16 { 5-- [ ! ]A:[43 - t ]
a - t 3 7 2-13

p ?
"

option 2 :

sup Iwo rows (Rit> R;) ( Ri →
_

)

Multiply one row by a von - no constant ( ahi ) j
Add axular multiple of Rj to ki (RitaRj )

B can be obtained by performing a sequence 0f
"

ftp.de B
"

Vow Operation to A. ( or , vice versa !

Rou Operators are reversible! )



Example. Solve the following system of linear equations by “row-

reducing” an appropriate matrix:

x1 + x3 = 3

�4x1 + 3x2 � x3 = 6

2x1 � x2 + 3x3 = 7

Note. This algorithm for solving SLEs will be one of your primary

tools in this course; be sure to practice it (and understand what your

computations actually mean)!
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Apply row operations

✓

[ aib ] =
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"

:[%! / ! } :B > [!! ! / Ê!
"""
" ° % /""¥:|!O - I I 1

"
2×5-7
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✗
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* Note : I could have stopped at this point and used
back- substitution to

solve !
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