May 13 (Lecture 3)

Overview: The dot product allows us to talk about more geometry, and in particular allows us to define *projections*. Then, we'll start talking about linear equations, which we've seen a little bit already!

Learning Goals:

- Use the dot product to compute lengths of and angles between vectors.
- Correctly define and use projections of vectors onto other vectors.
- Define and solve systems of linear equations.

As you're getting settled:

Homework 1 is out! It's due next Tuesday (at $11:30$ pm sharp). (Practice submitting with Homework 0 and the Video Walkthrough!) → MAY 18in !

- Yesterday was Women in Mathematics Day! **p** Forum Post to come (Maryam Mirzakhani's birthday, for reference.) S oon $\frac{11}{2}$
- Reflection due friday, 11:30 pm! (Released after)

* • Do you see anyHring in th Bright Space Calendar ? ↳ Yes !

(Chapter 2)

 $P^{\rightarrow^{\mathcal{A}}^{\mathcal{A}}}$

Systems of Linear Equations

Definition. A *linear equation* in the variables x_1, \ldots, x_n is an equation of the form α' x' + \cdots + α'' x' μ = p Note : $a_i =$ "coefficients", $b =$ "constant term" $(a_{11},...,a_{n1})$ b $\in \mathbb{R}$)

Example. Which of the following equations are linear in the variables x_1, x_2 ? ° O is a real

number

$$
\bullet \ \pi x_1 - e x_2 = 42 \quad \sqrt{25} \, \frac{1}{2}
$$

$$
\bullet \quad x_1 = x_2^2 - 1 \qquad \bigwedge \bigcirc \bigwedge^{\prime} \bigcirc^{\prime} \qquad (\text{Parabola})
$$

$$
\bullet \ \sin^2(x_1) + \cos^2(x_2) = 1 \quad \text{N0}.
$$

$$
\bullet \ (x_1 + x_2 = 1, \text{ where } x_1 = \sin^2(t_1) \text{ and } x_2 = \cos^2(t_2). \text{ Yes.}
$$
\n
$$
\left(\text{but not in } t_1, t_2\right) \#
$$

$$
\bullet \ 0 = 0 \ \text{Res}^{\bullet} \left(\ v^{\prime} = \sigma^{\bullet} = \rho \circ \sigma \right)
$$

$$
\bullet \ \vec{n} \cdot \vec{x} = 1, \text{ where } \vec{n} = \begin{bmatrix} n_1 \\ n_2 \end{bmatrix} \text{ and } \vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \text{ } \bigvee_{i} s \downarrow_{\bullet}
$$

Note: $0=3$ is not a true equation! but it is linear .

Gponentrichly)	
Note. A linear equation can represent...	
• A point, in R: $nx = b$ ($a \ne 0$)	
• A line, in R ² : $6_1x_1 + 6_2x_1 = b$	
• A line, in R ³ : $6_1x_1 + 6_2x_1 + 6_3x_1 = b$	
• A plane, in R ³ : $6_1x_1 + 6_2x_1 + 6_3x_1 = b$	
• A plane, in R ³ : $6_1x_1 + 6_2x_1 + 6_3x_1 = b$	
• A "hyper plane" is "A" A" B" Gromssol	
• h "hyper polynomials look like $h \ne 0$ for equal to h or equal to h for equal to h for h for all h and h for $(k, i) = b$ for all h and h for $(k, i) = b$ for all h and h for $(k, i) = b$ for all h and h for $(k, i) = b$ for all h and h for h and h for h and h are m ?	
• h is Sornedimes called k normal vector h , k hyperplane.	
• h is a non-angled vector h and h for h and h are m ?	
• <	

In higher "dinnessons", a hyperplane looks like "all vectors orthogonal to a given normal, translated a bit cloy the direction of the vector".

Definition. A *system of linear equations* in variables x_1, \ldots, x_n is a collection of *m* linear equations in those variables: $P.80$ ⁸⁰ (SLE)

$$
a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1
$$
\n
$$
a_{21}x_1 + a_{22}x_3 + \cdots + a_{2n}x_n = b_2
$$
\n
$$
a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = b_m
$$
\nIn the notation
$$
a_{ij}
$$
 i-th equation, j-th variable coefficient.\nA vector
$$
\vec{x} = \begin{bmatrix} s_1 \\ \vdots \\ s_n \end{bmatrix}
$$
 is a solution of the system when all *m* equations\nare satisfied when $x_i = s_i$ for each *i*. The set of all solutions to a system is the *solution set*.

A system of linear equations is *consistent* when it has at least one solution; otherwise, it is *inconsistent*. i. e . No solutions

Example. $x_1 + 2x_2 = 3$ τ $2x_1 - 2x_2 = 12$ $\begin{matrix} \longmapsto \end{matrix}$ ✗ , + $2x_{2}=3$ the Solution set to this system is th intersection point of th lires! Add ϵ a's together to get $3x_1 = 15$, or $x_1 = 5$ Sub $x = 5$ back into $x, +2x = 3$ to get $5 + 2x = 3$ (y) $\partial x_2 = -\partial$ or $x_1 = -1$ $S = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} & S_{15} & S_{16} & S_{17} & S_{18} & S_{19} & S_{10} & S_{10} & S_{10} & S_{10} & S_{10} & S_{10} & S_{$

We can solve systems using three "equation" operations:

- Re-arrange EQ's
- Multiply an EQ by a non-Zero scalar
- Replace one EQ with that EQ plus ^a scalar multiple ofanothr Eau

Example. Solve the following system of equations:

$$
x_1 - 2x_2 = -3
$$

\n
$$
x_1 - x_2 - x_3 = -5
$$

\n
$$
x_1 - 2x_2 + x_3 = 0
$$

\n
$$
x_1 - 2x_2 + x_3 = 0
$$

Visualize the solution set.

(801)
\nMultiply
$$
\frac{1}{2}
$$
 602 by -1: $x_2 + x_3 = 5$
\n(803)
\nReplace 603 by 603 + (-1)(601): $\begin{array}{l} (601) \\ x_4 + x_3 = 5 \end{array}$
\n $x_3 = 3$
\n $x_2 = 5 - x_3 = 5 - 3 = 2$
\n $x_2 = 5 - x_3 = 5 - 3 = 2$
\nSo the solution 30.4 is $\sum_{k=1}^{n} \begin{array}{l} \begin{array}{l} 1 \\ x_2 \end{array} & \begin{array}{l} x_1 = -3 + 4x_2 = -3 + 4 \\ = 1 \end{array} \end{array}$

*Visualizing: ^o Geo Gebran (3D) ° Grapher on macOS

Example. Find a vector in
$$
\mathbb{R}^4
$$
 orthogonal to both $\begin{bmatrix} 1 \\ 2 \\ 1 \\ -3 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 3 \\ 0 \\ -5 \end{bmatrix}$.
\nLet $x = \begin{bmatrix} x \\ x \\ x_1 \end{bmatrix}$. Then:
\n $0 = \frac{1}{x} \cdot \begin{bmatrix} \frac{1}{x} \\ \frac{1}{x_1} \\ -\frac{1}{x_2} \end{bmatrix} = x_1 + 3x_1 + 0x_2 - 3x_1$
\n $0 = \frac{1}{x} \cdot \begin{bmatrix} \frac{1}{x} \\ \frac{1}{x_2} \\ -\frac{1}{x_3} \end{bmatrix} = \frac{x_1 + 3x_1 + 0x_2 - 5x_1}{x_1 + 3x_1 + 0x_2 - 5x_1}$
\nReplace x_1 in $\{0, 1, -1\}$ for $\{0, 1, 1\}$.
\n $x_1 + x_2 - x_3 - 3x_4 = 0$
\nNumber of x_1 in $\{0, 1, -1\}$ for $\{0, 1, 1\}$.
\n $x_1 + x_2 - x_3 - 3x_4 = 0$
\nNumber of x_1 in $\{0, 1, -1\}$ for $\{0, 1, 1\}$.
\n $x_1 + x_2 - x_3 - x_4 = 0$
\n $x_2 - 3x_1 - 2x_4 = 0$
\n $x_3 - 3x_2 - x_4 = 0$
\n $x_4 - 3x_1 - x_4 = 0$
\n $x_5 - x_3 + 2x_4 = 0$
\n $x_6 - x_1$.
\n $x_7 = x_3 - x_4$
\n $x_8 = x_3 + 2x_4$
\n $x_9 = x_3$
\n $x_1 = x_4$.
\n $x_1 = x_4$.
\n $x_2 = x_3 + 2x_4$
\n $x_3 = x_3 + x_4$
\n x_4

Definition. If one can go from one system of linear equations to another via the three equation operations, then the two systems are equivalent. " This system are equivalent then ... p.85 the two slets have to some solution set! "

Note. The process of solving systems of equations that we're using is called *(Gaussian) elimination*. If we get to a point halfway through and start substituting values back in, then sometimes we call it *backsubstitution*.

Do we *really* need to keep track of the variable names?

 $p \nightharpoonup$

Definition. Given a system of *m* linear equations in *n* unknowns, we can represent the system with a *matrix* :

Example. Write down the associated augmented matrix for this system of equations:

*x*¹ + *x*³ = 3 4*x*¹ + 3*x*² *x*³ = 6 2*x*¹ *x*² + 3*x*³ = 7 solutions Augmente matrix : 1- 0 1- 3 § coefficient Matrix : Vector of constats : ^l 01 f-43 -16 { 5-- ^A [!] :[⁴³ - ^t] ^a ^t ³ 7 2-13

Definition. The "equation" operations have analogous *(elementary) row operations*:
 $\begin{array}{ccc} \text{for } & \text{otherwise} \end{array}$
 $\begin{array}{ccc} \text{for } & \text{otherwise} \end{array}$ $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
 $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

Multiply one roa by a var-zero contition (aR_i)

Add a scalar multiply of
$$
R_j
$$
 b R. $(R_i + aR_j)$

We say that two matrices *A* and *B* are *row equivalent*, denoted $A \sim B$, when B can be obtained by performing a sequence of "A tike B " Vas operations to A. (or juice versa!

17

Rou operators are reversible.)

Example. Solve the following system of linear equations by "rowreducing" an appropriate matrix:

$$
x_{1} + x_{3} = 3
$$
\n
$$
-4x_{1} + 3x_{2} - x_{3} = 6
$$
\n
$$
2x_{1} - x_{2} + 3x_{3} = 7
$$
\n
$$
[A|b] = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 3 & 1 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 8 & 14 & 10 & 1 & 3 \\ 0 & 3 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{bmatrix}
$$
\n
$$
x_{1} + x_{3} = 3
$$
\n
$$
2x_{1} - x_{2} + 3x_{3} = 7
$$
\n
$$
2x_{1} - x_{2} + 3x_{3} = 7
$$
\n
$$
x_{2} - 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 3 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 8 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 10 & 1 & 3 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 10 & 1 & 3 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 10 & 1 & 3 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 10 & 1 & 3 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 10 & 1 & 3 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 &
$$

* Note: I could have stopped at this point and read back-substitution to solve!

> \triangleleft Note. This algorithm for solving SLEs will be one of your primary tools in this course; be sure to practice it (and understand what your computations actually mean)!