May 13 (Lecture 3)

Overview: The dot product allows us to talk about more geometry, and in particular allows us to define *projections*. Then, we'll start talking about linear equations, which we've seen a little bit already!

Learning Goals:

- Use the dot product to compute lengths of and angles between vectors.
- Correctly define and use projections of vectors onto other vectors.
- Define and solve systems of linear equations.

As you're getting settled:

• Homework 1 is out! It's due next Tuesday (at **11:30 pm** sharp). (Practice submitting with Homework 0 and the Video Walkthrough!)

, MAY 18th 1

- Yesterday was Women in Mathematics Day! (Maryam Mirzakhani's birthday, for reference.)
- Reflection due Triclay, 11:30pm. (Released after)

(Chapter 2)

p.79

Systems of Linear Equations

Definition. A linear equation in the variables x_1, \ldots, x_n is an equation of the form $\alpha_1 \times \cdots + \alpha_n \times \cdots + \alpha_n$

Example. Which of the following equations are linear in the variables x_1, x_2 ?

number

•
$$\pi x_1 - ex_2 = 42$$
 yes?

•
$$x_1 = x_2^2 - 1$$
 NO' (Purubola)
Not a line!

•
$$\sin^2(x_1) + \cos^2(x_2) = 1$$
 No?

•
$$x_1 + x_2 = 1$$
, where $x_1 = \sin^2(t_1)$ and $x_2 = \cos^2(t_2)$. Yes,
(but not in $f_{11} f_2$)*

•
$$0 = 0$$
 Ges, $(\alpha' = \alpha^3 = \rho = 0)$

•
$$\vec{n} \cdot \vec{x} = 1$$
, where $\vec{n} = \begin{bmatrix} n_1 \\ n_2 \end{bmatrix}$ and $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ yes $\begin{pmatrix} \ddots \\ (n_1 \times 1 + n_2 \times 2^{-1}) \end{pmatrix}$

Note: 0=3 is not a true equalion! but it is Linear.

(geometrically)
Note. A linear equation can represent...
• A point, in
$$\mathbb{R}$$
: $A \times = b$ ($a \neq 0$)
• A line, in \mathbb{R}^2 : $a_1 \times_1 + a_2 \times_2 = b$
• A plane, in \mathbb{R}^3 : $a_1 \times_2 + a_2 \times_2 + a_3 \times_3 = b$
• A "hypu plane" b Higher Ornerstand
· more dimensions joint we can't dress them.
All of our equations look like $a_1 \times_1 + \dots + a_n \times_n = b_1$ so if
 $\hat{n} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$, $\hat{\pi} = \begin{bmatrix} x_1 \\ \vdots \\ \vdots \\ x_n \end{bmatrix}$, then every linear equation boks like $\hat{n} \cdot \hat{x} = b$!
If if schebbes $h, \hat{q} = b$, then $\hat{n} \cdot \hat{x} = \hat{n} \cdot \hat{q}$ can be rearranged to $h.(\hat{q} \cdot \hat{q}) = b$! Meaning, \hat{n} is different.
If \hat{q} schebbes $h, \hat{q} = b$, then $\hat{n} \cdot \hat{x} = \hat{n} \cdot \hat{q}$ can be rearranged to $h.(\hat{q} \cdot \hat{q}) = b$! Meaning, \hat{n} is different.
If $\hat{n} = \begin{bmatrix} x_1 \\ y_1 \\ y_2 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_2 \\ y_3 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_2 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_2 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_2 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_2 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_2 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_2 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_2 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_2 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_2 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_2 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_4 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_4 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_4 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_4 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_4 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_4 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_4 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_4 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_4 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_4 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_4 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_4 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_4 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_4 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_4 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_4 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_1 \\ y_4 \end{bmatrix}$, $\hat{n} = \begin{bmatrix} x_$

In higher "dimensions", a hyperplane looks like "all vectors orthogonal to a given normal, translated a bit day the direction of the vector". P, SO (SLE) **Definition.** A <u>system of linear equations</u> in variables x_1, \ldots, x_n is a collection of *m* linear equations in those variables:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$$

$$a_{1i}, j : a_{3i}, j$$

$$a_{21}x_1 + a_{22}x_3 + \dots + a_{2n}x_n = b_2$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$
In the notation a_{ij} : *i*-th equation, *j*-th variable coefficient.
$$a_{i}, j : a_{3i}, j$$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$
A vector $\vec{x} = \begin{bmatrix} s_1 \\ \vdots \\ s_n \end{bmatrix}$ is a *solution* of the system when all *m* equations are satisfied when $x_i = s_i$ for each *i*. The set of all solutions to a

system is the *solution set*.

A system of linear equations is *consistent* when it has at least one solution; otherwise, it is *inconsistent*. i.e. No solutions

Example. $x_1 + \Im x_2 = 3$ $\Im x_1 - \Im x_2 = 12$

The Solution set to this system
is the intersection point of the lineo?
Add EQ's together to get
$$3x_1 = 15$$
, or $x_1 = 5$
Sub $x_1 = 5$ back into $x_1 + 3x_2 = 3$ to get $5 + 3x_2 = 3$
(Y) $3x_2 = -2$ or $x_1 = -1$
So, the solution set is $\sum_{i=1}^{n} \frac{5}{2} = 3$

We can solve systems using three "equation" operations:

- Re-arrange EQ's
 Multiply an EQ by a non-zero scalar
- · Replace one EQ with that EQ plus a scalar multiple of another EQ.

Example. Solve the following system of equations:

$$x_1 - 2x_2 = -3$$

 $x_1 - 2x_2 = -3$
 $x_1 - x_2 - x_3 = -5$
 $x_1 - 2x_2 + x_3 = 0$
SLE in the Unriable
 $x_1 + x_2 - x_3 = -5$

Visualize the solution set.

Example. Find a vector in \mathbb{R}^4 orthogonal to both $\begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}$. Let $\dot{X} = \begin{bmatrix} X_1 \\ x_2 \\ x_3 \end{bmatrix}$. Then... $0 = \overline{\lambda} \cdot \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \chi_1 + \partial \chi_2 + \chi_3 = 3\chi_4$ $0 = \frac{1}{3} \cdot \left[\frac{1}{3} \right] = \frac{1}{3} \cdot \frac{1}$ Replace EQa with EQ37(-1)EQ1 $\therefore X_1 + 2x_2 + X_3 - 3x_4 = 0$ "eliminate x_1 in FQ2" $(0_{X_1} + 1_{X_2} - X_1 - a_{X_4} = 0)$ Solutions are quickly a vector EQ!

p. 85 **Definition.** If one can go from one system of linear equations to another via the three equation operations, then the two systems are *equivalent*. A This system are equivalent then... the two SLEs have to some solution set! "

Note. The process of solving systems of equations that we're using is called *(Gaussian) elimination*. If we get to a point halfway through and start substituting values back in, then sometimes we call it *back-substitution*.

Do we *really* need to keep track of the variable names?

Definition. Given a system of m linear equations in n unknowns, we can represent the system with a *matrix*:

system of equations:

$$x_{1} + x_{3} = 3$$

$$-4x_{1} + 3x_{2} - x_{3} = 6$$

$$\underline{Solution}$$
Augmented matrix:
$$\begin{cases}
2x_{1} - x_{2} + 3x_{3} = 7 \\
2x_{1} - x_{2} + 3x_{3} = 7 \\
Coefficient matrix:
\\
Vector of constasts \\
a - 1 3 \\
a - 1$$

Definition. The "equation" operations have analogous (elemenby operations: $Sucp has routs (R_i \leftrightarrow R_j)$ $(R_i \rightarrow _)$ tary) row operations:

Multiply one row by a von-zuo constant (aRi)

We say that two matrices A and B are row equivalent, denoted $A \sim B$, when B can be obtained by performing a sequence of "A tilde B" Var operations to A. (or Nice varsa!

17

Row operations de reversable.)

Example. Solve the following system of linear equations by "row-reducing" an appropriate matrix:

$$x_{1} + x_{3} = 3$$

$$-4x_{1} + 3x_{2} - x_{3} = 6$$

$$2x_{1} - x_{2} + 3x_{3} = 7$$

$$\begin{bmatrix} A | b \end{bmatrix} = \begin{bmatrix} | 0 | & | & 3 \\ -4 & 3 & | & | & 3 \\ 2 & -1 & 3 & | & 2 \end{bmatrix} \xrightarrow{R_{2} + 4R_{1}} \begin{bmatrix} | 0 | & | & 3 \\ 0 & 3 & 2 & | & | & 3 \\ 0 & -1 & | & | & 1 \end{bmatrix}$$

$$\xrightarrow{\frac{1}{2}R_{2}} \begin{bmatrix} | 0 | & | & 3 \\ 0 & -1 & | & | & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_{3}} \begin{bmatrix} | 0 | & | & 3 \\ 0 & -1 & | & | & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_{3}} \begin{bmatrix} | 0 | & | & 3 \\ 0 & -1 & | & | & 1 \end{bmatrix}$$

$$\xrightarrow{\frac{1}{2}R_{2}} \begin{bmatrix} | 0 | & | & 3 \\ 0 & -1 & | & | & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_{3}} \begin{bmatrix} | 0 | & | & 3 \\ 0 & -1 & | & | & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_{3}} \begin{bmatrix} | 0 | & | & 3 \\ 0 & -1 & | & | & 1 \end{bmatrix}$$

$$\xrightarrow{\frac{1}{2}R_{2}} \xrightarrow{\frac{1}{2}R_{3}} \begin{bmatrix} | 0 | & | & 3 \\ 0 & -1 & | & | & 1 \end{bmatrix} \xrightarrow{\frac{1}{2}R_{3}} \xrightarrow{\frac{1}{2}R_{3}} \begin{bmatrix} | 0 | & | & 3 \\ 0 & -1 & | & | & 1 \end{bmatrix}$$

$$\xrightarrow{\frac{1}{2}R_{2}} \xrightarrow{\frac{1}{2}R_{3}} \xrightarrow{$$

* Note: I could have stopped at this point and used back-substitution to solve!

★ Note. This algorithm for solving SLEs will be one of your primary tools in this course; be sure to practice it (and understand what your computations actually mean)!